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Abstract

The udkm1Dsim toolbox is a collection of matlab (MathWorks Inc.) classes and routines to simulate the structural
dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary
time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary
layered structures on the atomic level including a rich database of corresponding element-specific physical properties.
The excitation of ultrafast dynamics is represented by an N -temperature model which is commonly applied for ultrafast
optical excitations. Structural dynamics due to thermal stress are calculated by a linear-chain model of masses and
springs. The resulting X-ray diffraction response is computed by dynamical X-ray theory. The udkm1Dsim toolbox is
highly modular and allows for introducing user-defined results at any step in the simulation procedure.
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1. Introduction

Physics on the ultrafast time scales and nanometer
length scales has received enormous attention during the
last decade. Ultrafast X-ray diffraction (UXRD) tech-
niques allow for directly studying structural dynamics on
the atomic length and time scales. The knowledge of the
time-resolved structural response to an ultrafast optical
stimulus is essential for the understanding of various con-
densed matter phenomena.[1–4]

The udkm1Dsim toolbox is a collection of classes and
routines to model 1D crystalline sample structures on the
atomic level and to simulate incoherent (heat diffusion) as
well as coherent lattice dynamics (acoustic phonons) by
semi-coupled equations of thermoelasticity.[5, 6] The re-
sulting transient X-ray diffraction response for the 1D sam-
ple structure is computed by dynamical X-ray theory.[7, 8]
Due to the high modularity of the toolbox it is easy to in-
troduce user-defined procedures in between the simulation
steps. The complete package is written in the matlab

programming language and requires the installation of the
matlab software environment. In order to use the multi-
core capabilities of matlab the Parallel Computing has to
be installed but is not required for udkm1Dsim to work.
As a convention for this document, all files and directories
are formatted without serifs (./path/file.ext) and all mat-
lab code is written in typewriter format (code = [1 10] ).
Furthermore, all physical quantities have to be input in
SI units and the same applies for all output variables.1

The latest udkm1Dsim package files can be downloaded
from www.udkm.physik.uni-potsdam.de/udkm1dsim in-
cluding a detailed documentation and example files. It
is highly recommended to be familiar with the basics of
matlab programming as well as with fundamental object-
orientated programming schemes. Please refer to the rich
matlab documentation on these topics for further help.

In the following, we introduce the implementation and
common workflow of the udkm1Dsim toolbox as well as
the underlying physical concepts. Please refer to the spe-
cific class documentations in the ./documenation/ folder of
the toolbox for detailed information on all available meth-
ods and properties. Finally, we provide examples of the
udkm1Dsim package which are compared with selected
ultrafast experiments on nano-layered thin film samples.

2. Implementation & Workflow

The udkm1Dsim package is developed asmatlab tool-
box with a command-line/script-based user-interface. The
backbone of the fully object-orientated toolbox is a col-
lection of classes in the ./classes/ folder which hold the
complete logic for building 1D sample structures and to

1A helper class units is provided to easily convert physical quan-
tities.

calculate the ultrafast dynamics in these structures. Ad-
ditional helper routines (./helpers/) and material param-
eter files (./parameters/) are included to improve the user
experience.

2.1. Structure Generation

The common workflow of a simulation procedure is
to create a crystalline sample structure at the beginning.
This 1D structure is build of atoms which form unit cells.
Unit cells are then grouped to layers/sub-structures which
can be further nested, e.g. to build multilayer structures.
All physical properties which are necessary for the later
simulations are stored in this structural objects. The in-
volved files are atomBase.m, atomMixed.m, unitCell.m and
structure.m.

2.1.1. Atoms

The smallest building block for a structure is an atom,
which is represented by the atomBase class. Atomic prop-
erties are automatically loaded on construction of each
atomBase instance from the given parameter files, by pro-
viding the correct symbol of the desired chemical element:

C = atomBase( 'C' );
H = atomBase( 'H' );

By executing the command C.disp() all properties of the
corresponding atomBase object are displayed. Solid so-
lutions, i.e. stoichiometric atomic substitutions, can be
modelled by the atomMixed class. Here, atomBase ob-
jects can be added with an according relative amount to
the solution:

ZrTi = atomMixed( '0.2 Zirconium/0.8 Titanium' );
ZrTi.addAtom(atomBase( 'Zr' ), 0.2);
ZrTi.addAtom(atomBase( 'Ti' ), 0.8);

The resulting mixed atomic properties are the weighted
average of the constituent’s properties.

2.1.2. Unit Cells

The unitCell class holds most of the physical proper-
ties which are necessary for the further simulations. In ad-
dition to structural information, i.e. the position of atoms
in the unit cell, thermal and mechanical properties are
stored here. The only required parameters on initializa-
tion of a unitCell instance are a unique identifier (ID),
name, and the c-axis (lattice parameter normal to the sam-
ple surface) of the unit cell. All other properties can be
optionally handed over within a parameter struct on con-
struction, or can be added/modified later:

cAxis = 3.95e −10; % [m]
prop.soundVel = 5100; % [m/s]

.

.
prop.heatCapacity = 465; % [J/kg K]
% SrRuO3− Perovskite
SRO = unitCell( 'SRO' , 'SrRuO3' , cAxis, prop);
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After the construction of a unitCell object, one can add
atomBase or atomMixed object at relative positions in the
1D unit cell, e.g for the cubic SrRuO3 (SRO) perovskite
unit cell:

SRO.addAtom(Sr, 0 );
SRO.addAtom(O , 0 );
SRO.addAtom(Ru, 0.5);
SRO.addAtom(O , 0.5);
SRO.addAtom(O , 0.5);

In the 1D approximation the lateral position of the atoms
in the unit cell is not relevant. One needs to determine
the position of the individual atoms in the unit cell along
their projection onto the surface normal of the sample.
Moreover, it is not possible to add fractions of atoms at
certain unit cell position. Hence, one has to translate the
origin of the unit cell accordingly.

All available unit cell properties can be easily displayed
by executing the command SRO.disp() . The position
of atoms in the unit cell can be visualized by executing
SRO.visualize() .

2.1.3. Structures

The final 1D crystalline samples are represented by the
structure class which only requires a name on initializa-
tion. One can add any number of unitCell objects to a
structure, as well as nested substructures. An example of a
SrRuO3/SrTiO3 superlattice with 10 periods on a SrTiO3

(STO) substrate is shown in the listing below:

DL = structure( 'Double Layer' );
% add 13 SRO and 25 STO unit cells to the DL
DL.addSubStructure(SRO,13);
DL.addSubStructure(STO,25);

S = structure( 'Superlattice Sample' );
% add 10 DLs to the sample
S.addSubStructure(DL,10);
% add 1000 STO unit cells to the sample
S.addSubStructure(STO,1000);

In order to simplify the sample structure creation, all of the
above mentioned steps can be included in an external XML
file which holds all information on atoms, unit cells and on
the structure itself. Hence, it is easy to store structures
outside of matlab in a unified and open standard. An
example XML file is provided in the ./example/ folder
of the toolbox. In order to load the data from the XML
file into the matlab workspace one needs to execute the
following command providing the relative or absolute path
to the XML file:

S = structure( 'void' , './structure.xml' );

Again, the structure properties can be displayed with
the command S.disp() and the structure can be visual-
ized by S.visualize() .

2.2. Simulation Classes

Besides the 1D sample structures, also all simulations
are programmed as classes and inherit from the super-class
simulation . All simulation -inherited classes provide
fundamental properties and methods for storing and load-
ing of simulation results from a so-called /cache/ folder.
The udkm1Dsim toolbox can decide independently by com-
paring a unique hash of all simulation input parameters
whether a simulation result (once calculated) can be loaded
from the cache folder or needs to be (re-)calculated. The
hash algorithm decides also which parameter changes are
relevant for a simulation model, e.g. a change of the sound
velocity of a unit cell does not change the result of the heat
diffusion calculation, however it does change the result of
the lattice dynamics simulation. Further functionalities of
the simulation class are to enable/disable any command-
line messages during the simulations, e.g. to display the
elapsed time for a simulation step, and to change the mode
of progress displaying.

In order to calculate the time-dependent X-ray diffrac-
tion response of a 1D crystalline sample structure to an
ultrafast stimulus the following three simulations steps are
necessary:

1. The excitation is described as temperature changes
in an N -temperature model with optional heat dif-
fusion which determines the temperature evolution
in the N coupled subsystems.

2. The resulting lattice dynamics due to thermal stress
possibly generated by any of the N subsystems are
calculated by a 1D linear-chain model.

3. Dynamical X-ray theory is applied to calculate the
UXRD response to the lattice dynamics.

These three steps are encapsulated in the simulation classes
heat , phonon , and XRDwhich all require a structure ob-
ject on initialization.

It is important to note, that each of the simulation
steps listed above may be executed independently with
user-defined inputs. Thus it is not necessary to execute the
heat and phonon simulations if the user needs to calculate
the X-ray diffraction result e.g. for artificial or externally
calculated lattice dynamics.

2.3. Thermal Excitation & Diffusion

The udkm1Dsim toolbox allows for different excita-
tion scenarios and optional thermal transport. The most
general model is an N -temperature model (NTM) which is
described in section 2.3.1.[9] However, for various exper-
imental cases it is convenient to simplify the simulation
procedure in order to save computational time.

In all cases it is assumed that the sample structure
is excited by a light pulse which is absorbed following
Lambert-Beer’s law:

I(z) = I0 e
−z/ζ , (1)
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with ζ as optical penetration depth of the material for the
considered wavelength. Accordingly, one can define the
transmission and absorption in the material as follows:

τ =
I(z)

I0
= e−z/ζ , α = 1− τ . (2)

Note that we do not consider the reflected laser light here.
The deposited optical energy is then given by the spatial
derivative of the absorption:

∂α

∂z
=

1

ζ
e−z/ζ . (3)

The most simplified excitation scenario is represented by
an instantaneous temperature jump of the excited sample
structures (infinitely short laser pulse). This assumption is
generally valid if the excitation and thermal equilibration
between all N subsystems happen much faster than the
subsequent thermal and/or lattice dynamics. The instan-
taneous temperature jump at depth z can be calculated
from the energy absorbed by the corresponding unit cell
via:

∆E(z) =

∫ T2

T1

mc [T (z)] dT (z) , (4)

where T1 is the initial and T2 is the final temperature
of the unit cell, m is the unit cell mass, and c(T ) is the
temperature-dependent specific heat capacity. In order to
calculate the absorbed energy per unit cell at the depth z
in the sample structure one can linearize Eq. 3 for small
∆z in terms of energy instead of intensity to get

∆E =
∂α

∂z
E0 ∆z , (5)

where ∆z is the size of the according unit cell. The initial
energy E0 which is incident on the first unit cell can be
derived from the incident absorbed fluence F = E0/A,
where A is the area of a single unit cell. Hence, one has
to minimize the following modulus in order to obtain the
final temperature T2 of a unit cell after optical excitation:

∣

∣

∣

∣

∣

∫ T2

T1

mc [T (z)] dT (z)−
E0

ζ
e−z/ζ∆z

∣

∣

∣

∣

∣

!
= 0 . (6)

In order to solve the above minimization problem it is nec-
essary that the heat capacity c(T ) is input as a polynomial
of any order, thus enabling matlab to integrate c(T ) al-
gebraically with respect to the temperature T .

The temperature jump resulting from the optical exci-
tation at t = 0 can be further used as initial condition for
solving the 1D heat diffusion equation:

c [T (z, t)] ρ
∂T (z, t)

∂t
=

∂

∂z

(

k [T (z, t)]
∂T (z, t)

∂z

)

(7)

including the thermal conductivity k(T ) and mass density
ρ of the individual unit cells. The udkm1Dsim toolbox
is capable of calculating the optical excitation and ther-
mal dynamics independently for a given sample structure,

thermal parameters, and excitation scenario. The corre-
sponding code listing for an excitation at t0 = 0 with a
fluence of F = 5 mJ/cm2 including heat diffusion for a
given sample structure S might look as follows:

% initialization of heat simulation
H = heat(S,forceRecalc);
% S − structure object
% forceRecalc − boolean
% enable heat diffusion
H.heatDiffusion = true;
% introduces SI units
u = units;
% temporal grid for heat simulations
time = ( −20:0.1:200) * u.ps;
% initial temperature of the structure
initTemp = 300 * u.K;
% define the excitation
F = 5* u.mJ/u.cmˆ2;
% the temperature profile is calculated:
[tempMap, deltaTempMap] = ...

H.getTempMap(time,F,initTemp);

Here, initTemp is the initial temperature of the sample,
which can be defined globally or per unit cell and the vec-
tor time defines the time grid of the calculation. The
actual numerical calculation is executed by the last com-
mand in the above listing and requires no further insight
into the involved mathematics. The udkm1Dsim toolbox
allows for more sophisticated excitation scenarios, such as
optical pulse sequences with arbitrary temporal pulse sep-
arations and durations as well as user-defined pulse energy
distributions. Please refer to the corresponding examples
for further details on this topic.

2.3.1. N-Temperature Model

The so-calledN -temperature model (NTM)[9] is a very
general model for laser heating of metals and semiconduc-
tors. In the NTM materials are described by N thermal
subsystems having individual temperatures Tj(z, t), heat
capacities cj(Tj), thermal conductivities kj(Tj) and cou-
pling terms Gj(T1, ..., TN ). The subsystems might be rep-
resented by e.g. electrons, lattice, or spins of the according
material:

c1(T1)
∂T1
∂t

=
∂

∂z

(

k1(T1)
∂T1
∂z

)

+G1(T1, ..., TN ) + S(z, t)

... (8)

cN(TN )
∂TN
∂t

=
∂

∂z

(

kN (TN )
∂TN
∂z

)

+GN (T1, ..., TN ) .

The udkm1Dsim toolbox limits the excitation of a struc-
ture with N subsystem to happen exclusively in the first
subsystem. The excitation can be either given as an ini-
tial condition due to an instantaneous temperature jump
(see above) or by a spatially and temporally varying source
term S(z, t). This source term is the energy flux per vol-
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ume and time

S(z, t) =
∂2E

A ∂z ∂t
, (9)

where A is again the unit cell area. The spatial profile of
S(z, t) is given by the absorbed energy density from Eq. 3
and the temporal profile is limited to a Gaussian function,
which states as

∂2E

∂z ∂t
=
dα

dz
E0 σ(t) , (10)

with σ(t) as a normalized Gaussian function in time [s−1]
and E0 as the initial energy incident on the first unit cell.
The resulting source term reads as follows:

S(z, t) =
dα

dz
F σ(t) . (11)

In order to enable the evaluation of the NTM it is nec-
essary to input all material properties in the structure as
N -dimensional cell arrays. Each element of the cell array
can be either a constant value for the according property or
an anonymous function of the jth subsystem temperature
Tj . In contrast to simple heat simulations with only a sin-
gle subsystem one needs to define the additional unitCell

property subSystemCoupling which represents the term
G(T ) in Eq. 9.

As it is necessary to solve the heat diffusion equation
the udkm1Dsim toolbox allows to define boundary con-
ditions of each subsystem, such as isolating boundaries,
constant temperature, or constant heat flux on either side
of the sample structure. Details on the broad capabili-
ties of the udkm1Dsim toolbox for thermal simulations
are given in the example files heatExample.m, heatNTmod-
elExample.m, and heatExcitationExample.m.

2.4. Lattice Dynamics

The optically induced temperature change usually in-
duce thermal stress in laser-heated materials. This ther-
mal stress eventually relaxes via thermal expansion which
is quantified by the linear thermal expansion coefficient:

α(T ) =
1

L

dL

dT
. (12)

Since the temperature change ∆T (z, t) for each unit cell
at each time step is known one can calculate the actual
thermal expansion of each unit cell by

l = ∆L = L1

(

e[A(T2)−A(T1)] − 1
)

, (13)

where L1 is the initial length (c-axis of the unit cell), A(T )
is the integral of α(T ), T1 and T2 denote the initial and
final temperatures of each unit cell, respectively. It is again
necessary to define α(T ) as a polynomial of any order of
the temperature T to enable matlab for simple and fast
algebraic integration.

The thermally expanded unit cells are only the final
state of the laser-excited crystal. In order to calculate

the transient lattice dynamics (including only longitudi-
nal acoustic phonons) towards this final state, we set up a
model of a linear chain of masses and springs in which each
unit cell represents a mass mi that is coupled to its neigh-
bors via springs with the spring constant ki = mi v

2
i /c

2
i (ci

- lattice c-axis, vi - longitudinal sound velocity):[10]

miẍi = −ki(xi − xi−1)− ki+1(xi − xi+1)

+miγi(ẋi − ẋi−1) + F heat
i (t) . (14)

Here xi(t) = zi(t) − z0i denotes the shift of each unit cell
from its initial position. Furthermore, we introduce an
empirical damping term F damp

i = γi(ẋi − ẋi−1) and the
external force (thermal stress) F heat

i (t). In order to solve
this system of coupled differential equations for each of
the i = 1 . . .N unit cells the udkm1Dsim toolbox pro-
vides an analytical (phononAna ) and a numerical model
(phononNum) which are described in detail below. Ex-
amples for both models are given in the example files
phononExample.m, and phononAnharmonicExample.m.

2.4.1. Analytical Solution

To obtain an analytical solution of Eq. 14 we neglect
the damping term F damp

i (t) and derive the homogeneous
differential equation in matrix form

d2

dt2
X = KX . (15)

HereX = (x1 . . . xN ) andK is the tri-diagonal force matrix.[10]
The matrix K can be diagonalized to obtain the eigenvec-
tors Ξj and eigenfrequencies ωj in order to find the general
solution

X(t) =
∑

j

Ξj (Aj cos(ωj t) +Bj sin(ωj t)) (16)

Mathematical details on the analytical model are given
in Ref. [10] and in the documentation of the phononAna

class. Generally, we use matlab’s capability to solve the
eigenproblem for K in order to get the results for X(t) for
each time step. One can implement the thermal stress as
new equilibrium position x∞i (t)/initial conditions for the
general solution Eq. 16 by doing an according coordinate
transformation. The thermal stress [F heat

i (t)] can be mod-
eled as spacer sticks li in between the unit cells which are
calculated from Eq. 13.

As an example listing of the analytical solution of the
coherent phonon dynamics we continue the above code,
having the structure S, time and the results of the heat

simulation (tempMap,deltaTempMap ) in memory.

% initialization of analytical phonon simulation
P = phononAna(S,forceRecalc);
% the strain profile is calculated:
strainMap = ...

P.getStrainMap(time,tempMap,deltaTempMap);

The matrix deltaTempMap is the temporal derivative of
the temperature profile tempMap. The analytical model
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has the advantage that once the eigenproblem is solved
for a fixed K (fixed sample structure) the strain profile can
be easily solved for any excitation profile at any time. In
the case of a quasi-instantaneous excitation without heat
diffusion this results in an extremely fast calculation since
the initial conditions X(0) change only once for the ex-
citation. However, the analytical model becomes rather
slow for time-dependent thermal stress, because of the re-
calculation of these initial conditions for each time step.
Accordingly, the temporal variation of the thermal stress
due to damping has not been implemented in this model.
The main disadvantage of the analytical model is the limi-
tation to purely harmonic inter-atomic potentials which is
overcome by the numerical model, described below. The
numerical model is generally also faster in the total com-
putational time and further accounts for phonon scattering
and damping effects.

2.4.2. Numerical Solution

Mathematical details on the numerical model for the
coherent phonon dynamics can be found in the documen-
tation of the phononNum class and in Ref. [11]. Generally,
we use matlab’s ODE solver to calculate the results for
Eq. 14 which can be simplified to

miẍi = F spring
i + F damp

i + F heat
i .

Here F spring
i = −ki(xi−xi−1)−ki+1(xi−xi+1) is the force

acting on each mass due to the relative shifts in respect to
the left and right neighboring masses. The numerical solu-
tion also allows for non-harmonic inter-atomic potentials of

up to the orderM . Accordingly, ki = (k
(1)
i . . . k

(M−1)
i ) can

be a vector accounting for higher orders of the potential

which is purely quadratic (ki = k
(1)
i ) in the harmonic case.

Thus we can introduce the following term into F spring
i :

ki (xi − xi−1) =

M−1
∑

j=1

k
(j)
i (xi − xi−1)

j , (17)

which accounts for the anharmonic interaction. In order
to calculate anharmonic phonon propagation, including
damping, one needs to set the according properties of the
unitCell object. For the example of the SRO unit cell
defined in Sec. 2.1.2 one has to write

SRO.phononDamping = 1e −12; % [kg/s]
SRO.setHOspringConstants([ −7e12]); % [kg/m sˆ2]

which sets the damping constant to γSRO = 10−12 kg/s

and the second-order of the spring constant to k
(2)
SRO =

−7 × 1012 kg/ms2. The actual numerical calculation for
the coherent phonon dynamics is similar to the analytical
model expect for the initialization of the phononNum object
at the beginning:

% initialization of numerical phonon simulation
P = phononNum(S,forceRecalc);

% the strain profile is calculated:
strainMap = ...

P.getStrainMap(time,tempMap,deltaTempMap);

We want to highlight, that the analytical and numer-
ical lattice dynamics calculations share the same syntax
in order to calculate the strain profile after optical exci-
tations. In addition, the user can input any temperature
profile for the thermal stresses and is not limited to the re-
sults of the heat simulations. In accordance to the NTM
described in Sec. 2.3.1, the thermal stresses can account
for multiple thermodynamic subsystems in the sample by
introducing different unitCell linear thermal expansion
coefficients αj(Tj) for the j

th subsystem.

2.5. X-Ray Diffraction

In order to probe transient lattice dynamics with atomic
resolution, time-resolved XRD techniques have emerged
as an appropriate method in experimental physics. The
udkm1Dsim toolbox provides methods to simulate the
static and transient XRD response of crystalline sample
structures. Due to the limitation to 1D sample structures
only symmetrical X-ray diffraction in co-planar geometry
is implemented. For the calculation of static XRD curves
(θ/2θ-scans) for homogeneously strained layers two differ-
ent theoretical approaches are provided: kinematical and
dynamical XRD. In kinematical XRD theory (XRDkin ) the
incident X-ray beam is unaffected by the crystal, since
absorption and multiple reflections are neglected.[12] In
the XRDkin class no refraction correction has been im-
plemented so far. However, the kinematical theory is a
rather fast analytical approach for thin crystal layers, ide-
ally imperfect mosaic crystals, and diffraction at the wings
of Bragg peaks. For high quality crystals, thick crys-
tals, and diffraction close to the maximum of strong Bragg
peaks, so-called dynamical XRD theory (XRDdyn) should
be considered.[8] Dynamical XRD theory accounts for ab-
sorption, refraction, scattering, and multiple reflections
(extinction) of the incident beam. In comparison to kine-
matical theory, dynamical XRD is generally slower to cal-
culate due to its complex matrix formalism. However, in
order to calculate the transient XRD response of a 1D sam-
ple structure due to ultrafast lattice dynamics only dynam-
ical theory is implemented in the udkm1Dsim toolbox,
since here its matrix formalism has no disadvantageous
against the kinematical theory in terms of computational
time. Examples on the applications and limitations of the
two models are given in the example file XRDexample.m.

For both theories the smallest scatterers in each struc-
ture are the individual atoms, whose scattering cross sec-
tions are given by the atomic form factor f .[8] Gener-
ally, these atomic form factors dependent on the energy
E and scattering vector qz = 2k sin (θ) of the incident X-
ray beam, where k = 2π/λ is the X-ray wave number and
θ is the incidence angle:[8]

f(qz, E) = fCM(qz) + δf1(E)− if2(E) . (18)
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The dispersion corrections δf1(E) and absorption correc-
tion f2(E) have been experimentally determined[13] whereas
the angle-dependence fCM(qz) is a theoretical correction
from Hartree-Fock calculations.[14] The values of f(qz, E)
are automatically loaded and calculated from the accord-
ing parameter files by the udkm1Dsim toolbox for each
atom/ion for a given E and qz and the reader may refer
to the documentation of the atomBase class for further
details. In order to account for the polarization of the X-
rays one has to introduce a θ-dependent polarization fac-
tor P (θ) in kinematical and dynamical XRD calculations
given by:[8]

P (θ) =











1 s-polarized

cos(2θ) p-polarized
1+cos(2θ)

2 unpolarized

(19)

2.5.1. Kinematical XRD

For the calculation of rocking curves using kinematical
theory one further introduces the structure factor of a unit
cell

S(qz , E, ǫ) =

N
∑

i

fi e
−i qz zi(ǫ) . (20)

The structure factor S(qz, E, ǫ) is the summation of all
atomic form factors fi(qz , E) in a specific unit cell and
also depends on the lattice strain ǫ by the position zi(ǫ)
of the individual atoms in the unit cell. From Ref. [12]
one can now calculate the diffracted wave field amplitude
at the detector from a single layer of similar unit cells as
follows:

Ep =
i

ε0

e2

me c20

P (θ)S(qz , E, ǫ)

Aqz
, (21)

with e as electron charge, me as electron mass, c0 as vac-
uum light velocity, ε0 as vacuum permittivity, and A as
area of the unit cell in the plane normal to qz . For the
case of N similar planes of unit cells one can then write:

EN
p =

N−1
∑

n=0

Epe
i qz z n , (22)

where z is the distance between the planes (c-axis of the
unit cells). The above equation can be simplified to

EN
p = Ep ψ(qz, z,N) , (23)

introducing the interference function

ψ(qz , z,N) =

N−1
∑

n=0

ei qz z n =
1− ei qz z N

1− ei qz z
. (24)

The total reflected wave field Et
p of all i = 1 . . .M homoge-

neous layers is the summation of the individual wave fields
EN,i

p :

Et
p =

M
∑

i=1

EN,i
p ei qz Zi , (25)

where Zi =
∑i−1

j=1(Nj zj) is the distance of the ith layer
from the surface. Finally, the actual reflectivity of the
sample structure is calculated by R = Et

p (E
t
p)

∗.
In order to obtain the static kinematical diffraction

curve of a given sample structure S one can follow the
code listing below:

% set the simulation parameters
E = 8047* u.eV; % X−ray energy
pol = 0.5; % mixed X−ray polarization
theta = (22:0.001:24) * u.deg; % angular range
% initialization of XRDkin simulation
K = XRDkin(S,forceRecalc,E,pol);
% set the qz −range by a theta −vector
K.setQzByTheta(theta);
% calculate the static diffraction curve:
Rs = K.homogeneousReflectivity();

2.5.2. Dynamical XRD

In dynamical XRD theory a complex matrix formal-
ism is applied to calculate the reflection and transmission
of X-rays by individual atomic layers forming the sam-
ple structure.[8] The basic building blocks for this formal-
ism are the reflection-transmission matrices of the atomic
planes

H =
1

τ

( (

τ2 − ρ2
)

ρ
−ρ 1

)

, (26)

and propagation matrices

L =

(

exp(iφ) 0
0 exp(−iφ)

)

. (27)

The matrix elements are defined as follows:

ρ = −i
4 π re f(qz, E)P (θ) e−M

qz A
, (28)

τ = 1− i
4 π re f(0, E) e−M

qz A
, (29)

φ =
qz d

2
, (30)

where re is the classical electron radius, M = (dbf qz)
2/2

with dbf2 = 〈u2〉 as average thermal vibration of the atoms
(Debye-Waller factor), and d is the distance between two
layers of scattering objects.

In order to obtain the final reflectivity of the sample
structure one has to carry out the according matrix mul-
tiplications of the H and L matrices. The reflectivity-
transmission matrix (RTM) of a single unit cell MRT is
calculated from the individual Hi of each atom and the
propagation matrices between the atoms Li:

MRT =
∏

i

Hi Li . (31)

For N identical layers of unit cells one can calculate the
N th power of the unit cell’s RTM (MRT)

N
instead of car-

rying out N matrix multiplications in order to save com-
putational time. The RTM for the homogeneous sample
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Mhom,tot
RT consisting of K homogeneous substructures then

becomes:

Mhom,tot
RT =

K
∏

k=1

(

M
(k)
RT

)Nk

. (32)

For the case of an inhomogeneously strained sample
one has to carry out the matrix multiplication for each
individually strained unit cell. Thus, the RTM of the in-
homogeneous sample M inhom,tot

RT containing m = 1 . . .M
unit cells is calculated by:

M inhom,tot
RT =

M
∏

m=1

M
(m)
RT , (33)

which is a rather expensive calculation since it has to be
carried out for all differently strained types of unit cells,
for all θ or qz, and for all time steps. The final reflectivity
R of the sample is the calculated from the matrix elements
of the 2× 2 RTM matrix as follows:

R =
∣

∣

∣
M tot

RT (1,2)/M
tot
RT (2,2)

∣

∣

∣

2

. (34)

In the following code listing we refer again to the results
of the heat and phonon simulations for the given sample
structure S introduced above. For the static case the syn-
tax for kinematical and dynamical XRD is similar. How-
ever, the simulation of UXRD from transient lattice dy-
namics which inevitably involves inhomogeneously strained
layers is only implemented in the XRDdyn class.

% initialization of XRDkin simulation
D = XRDdyn(S,forceRecalc,E,pol);
% set the qz −range by a theta −vector
D.setQzByTheta(theta);
% calculate the static diffraction curve:
Rh = D.homogeneousReflectivity();
% calculate a reduced number of strains per unique
% unit cell in order to save computational time
strainVectors = ...

P.getReducedStrainsPerUniqueUnitCell(strainMap);
% calculate the transient XRD:
R = D.getInhomogeneousReflectivity( ...

strainMap,strainVectors);

2.5.3. Parallel Computing

As mentioned before, the calculation of the transient
XRD result is very expensive in computational time, since
heavy matrix multiplications for all individually strained
unit cells in the sample, for all angles θ and time steps
have to be carried out. In order to speed up this calcu-
lations the udkm1Dsim toolbox uses matlab’s parallel
computing capabilities. The Parallel Computing Toolbox
has to be installed to enable this feature. In this parallel
mode the dynamical XRD results for the individual time
steps are calculated parallel, e.g. on a multi-core system
or computer-cluster2, since the results at different angles

2Cluster calculations require a matlab Distributed Computing
Server license.

and time steps are independent. The user can individu-
ally decide how to calculate the inhomogeneous reflectivity
by adding a third input parameter type to the function
call. The value of the type parameter can be 'parallel'

(default), 'distributed' , or 'sequential' , whereas the
latter case does not require additional licenses for the mat-
lab Parallel or Distributed Computing Toolbox:

type = 'sequential' ;
R = D.getInhomogeneousReflectivity( ...

strainMap,strainVectors,type);

3. Examples

In this section we want to provide physical examples for
the application of the udkm1Dsim toolbox. The complete
example code can be found in the ./examples/ folder.

3.1. Bragg-Peak Splitting Evidences Inhomogeneous Ex-

pansion

Here we consider a 95 nm metallic SRO thin film on
a dielectric STO substrate which is photoexcited by an
ultrashort laser pulse with a fluence of F = 20mJ/cm2.
The excitation is modeled as instantaneous temperature
jump and we further neglect heat diffusion. The temper-
ature change at t = 0 is shown in Fig. 1 a) and features
an exponential decay in the absorbing SRO layer in accor-
dance with Eq. 1. Subsequent coherent phonon dynamics
are calculated by the phononNum class and the resulting
spatio-temporal strain profile is depicted in Fig. 1 b).
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Figure 1: (Color online) a) Temperature change in the SRO thin film
after excitation at t = 0. b) Spatio-temporal strain profile due to
optical excitation of the SRO film. The SRO/STO interface is at
z = 95 nm.

Using the result of the phononNum simulation as input
for the dynamical XRD calculations (XRDdyn) we obtain
the UXRD response of the ultrafast excitation of the SRO
layer which is shown in Fig. 2 as a waterfall plot. Here,
the SRO Bragg peak splits up due to the excited lattice
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dynamics and does not continuously shift. Details for this
example simulation and comparison to experimental data
can be found in Ref. [15].
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Figure 2: Waterfall plot of the SRO Bragg peak reflectivity for
different delays after excitation of the thin film. The SRO peak
splits up into two peaks instead of continuously shifting into its new
position.

3.2. Superlattice Oscillations

In this example a superlattice (SL) structure is ex-
cited by an ultrashort laser pulse with a fluence of F =
30mJ/cm2. The SL consists of 11 double layers (DL) each
of which is composed of 20 unit cells of SRO and 38 unit
cells of STO. The SL is grown on an STO substrate. The
excitation is again modeled as instantaneous temperature
jump at t = 0 neglecting thermal transport. The tem-
perature profile after excitation is shown in Fig. 3 a). The
comb-like temperature profile originates from the alternat-
ing metallic and dielectric layers in the SL and exhibits an
exponential decay towards the substrate. Due to the ex-
citation profile, a longitudinal optical SL phonon mode,
also known as zone-folded longitudinal acoustic phonon
(ZFLAP), is excited which results in the complex spatio-
temporal strain pattern shown in Fig. 3 b). Here, the
strain oscillation directly indicates the frequency of the
optical phonon mode.

The SL structure also results in complex static XRD
signatures as can be seen in Fig. 4. This static diffraction
curve is calculated by the XRDdyn class which allows to
access also the individual diffraction curves of the repeated
substructures. The equidistant Bragg peaks originate from
the SL structure and are numerated as SLi. The most
intense Bragg peak is the STO substrate reflection.

The transient X-Ray diffraction calculations using the
coherent phonon result as input feature intensity oscilla-
tions of the SL Bragg peaks due to the excited longitudi-
nal optical SL phonon. The integrated intensities of the
SL0 and SL+2 Bragg peaks are plotted as transients in
Fig. 5. For the SL+2 peak a non-linear X-ray response is
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Figure 3: (Color online) a) Temperature change in the SL after ex-
citation at t = 0. b) Spatio-temporal strain profile due to optical
excitation of the SL film. The SL/Substrate interface is at z = 235
nm.
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Figure 4: (Color online) The static diffraction curve of the sample
structure is convoluted with a Pseudo-Voigt function in order to
account for instrumental broadening. The Bragg peaks of the SL
are numerated as SLi. The colored lines represent the diffraction
curves of the nested substructures in the sample.

observed. Details on this simulation and a comparison to
UXRD experiments are given in Ref. [16].

3.3. Quasi-Monochromatic Phonon Wave Packet

In the last example a thin 15 nm SRO layer on an
STO substrate is excited by a pulse sequence of 8 ultra-
short laser pulses with a pulse separation of 7.2 ps in or-
der to generate a coherent quasi-monochromatic phonon
wave packet in the substrate. The average temperature
in the SRO layer is plotted in inset of Fig. 6, where the
excitation is again modeled as instantaneous temperature
jump without heat diffusion. The corresponding transient
strain pattern is calculated by the phononNum class includ-
ing damping in the STO substrate. The waterfall plot in
Fig. 6 shows the subsequent generation of bi-polar strain
pulses in the substrate after each laser excitation.
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Figure 5: The integrated intensity modulation of the SL0 and SL+2
Bragg peak are plotted over the pump-probe delay. The X-ray re-
sponse of the SL+2 shows even non-linear behavior.
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Figure 6: The strain profile for different pump-probe delays are
plotted as waterfall diagram. For better visualization, the graphs are
also shift along the x-axis. The amplitude of the thermal strain in the
SRO layer has a maximum of approx. 1 % and the amplitude of the
phonon wave packet is approx. 0.05 %. The inset shows the average
temperature in the SRO layer due to the multipulse excitation of the
sample.

From this strain pattern we can compute the according
transient X-ray reflectivity using the XRDdyn class. Fig. 7
depicts the side bands of the STO substrate Bragg re-
flection for different pump-probe delays. The rise of the
first-order side band at qz = 3.229 Å−1 and a second-order
side band at qz = 3.240 Å−1 become stronger after each
excitation of the sample. Details on this simulation and
comparison to experimental data can be found in Ref. [17]
and [18].

4. Conclusions

The udkm1Dsim toolbox enables the user to easily
build 1D crystalline structures on the atomic-level using
a rich database of element-specific physical parameters.
The excitation and thermal transport in such 1D struc-
tures is calculated within the frame of an N -temperature
model. The results are then plugged into an analytical or
numerical model for evaluating the dynamics of coherent
longitudinal acoustic phonon in the structure. Kinemat-
ical and dynamical XRD theory are provided to further
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Figure 7: The side bands of the STO substrate Bragg peak are
plotted for different pump-probe delays as waterfall diagram. The
rise of the 1st order side band at qz = 3.229 Å−1 and even a second
order at qz = 3.240 Å−1 of the excited phonon wave packet becomes
stronger after each pump event.

calculate the static rocking curves of the structures for
symmetrical Bragg reflections in coplanar diffraction ge-
ometry. The transient XRD response of the structures
due to coherent phonon dynamics is evaluated exclusively
by dynamical XRD theory.

The udkm1Dsim toolbox is programmed fully object-
orientated and highly modular in order to allow for user-
defined inputs at any step of the simulation procedure.
Hence the toolbox is not only applicable for the compar-
ison of experimental UXRD data to the introduced theo-
retical models but also as an educational/theoretical test
ground for students and researchers in the scientific field
of ultrafast structural dynamics and ultrafast XRD.
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