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“Ambient water properties have been shown to re-
quire heterogeneity” (1) is the imperative followed
by Pettersson et al. (2) to relate X-ray spectroscopic
findings to a heterogeneous or 2-phase model of am-
bient water. In ref. 3 we question this hypothesis
based on quantitative X-ray spectroscopic evidence.
We come to conclude that X-ray spectroscopies sup-
port no observations related to heterogeneous, dis-
tinct structural motives in ambient water.

The critique of sum rules by Pettersson et al. (2) is
unjustified: Through normalization to the asymptotic
behavior we avoid sum rule normalization of X-ray ab-
sorption spectroscopy (XAS). In liquid water, extended
X-ray absorption fine structure oscillations are less
than a percent for the used normalization range (4)
(digitized), and less than twice that for ice (5).

Pettersson et al. (2) point toward well-known dis-
crepancies between XAS calculations and experi-
ments. For that reason, our analysis is not based on
exact reproduction of intensity ratios. However, the
used linear dependence of preedge peak intensity is
not empirical as claimed by Pettersson et al., but
based on first-principles simulations, outlined in ref. 3.

The occurrence of different vibrations in connec-
tion to different water molecules in the liquid was
carefully quantified in our recent article (6), whereas a
quantitative analysis is completely missing from ref. 7.
Strong asymmetries in the hydrogen bond donation re-
sult in mixing of the states of b1, b2, and a1 symmetries

(8), which has been found to explain resonant inelastic
X-ray scattering asymmetry experiments with contem-
porary ab initio molecular dynamics simulations (9).

Pettersson et al. (2) criticize the comparative dis-
cussion to phases of ice (reference 46 in ref. 3). We
point out similarities to ambient liquid water and set
attention to reference 46 in ref. 3 where high-
temperature ice spectra were reported to vary notably
from sample to sample. We also point out that our
simulated instantaneous X-ray emission spectra (XES)
for core-hole dynamics agree with others (e.g., ref. 8).
The fact that peak B′ maintains position in time-
integrated and site-averaged spectra reflects the rem-
nant unpropagated fraction of the evolving ensemble
following core ionization. Correct relative energy
alignment of the XES calculations at different times and
sites is accomplished by evaluating the chemical shifts as
in ref. 10.

Local structural motifs and assignments from high-
and low-density liquids (HDL and LDL) have been
claimed to motivate X-ray spectral features (e.g., ref.
7). We show in ref. 3 that X-ray spectral features are
compatible with continuous distribution models. Our
findings (3) might resonate with English and Tse on
size effects (11): HDL and LDL, as concepts based on
density, have thermodynamical meaning only for vol-
umes larger than approximately 1 nm3 (11). In these
applicable size scales “the density of bulk water at
ambient conditions is homogeneous” (11).
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