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Probing hydrogen bond strength in liquid water by
resonant inelastic X-ray scattering
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Local probes of the electronic ground state are essential for understanding hydrogen bonding
in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-
edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits
a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent
evolution of the OH bonds around the core-excited oxygen provides access to high vibra-
tional levels in liquid water. The OH bonds stretch into the long-range part of the potential
energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the
local environment. We exploit this property to effectively probe hydrogen bond strength via
the distribution of intramolecular OH potentials derived from measurements. In contrast, the
dynamical splitting in the spectral feature of the lowest valence-excited state arises from the
short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.
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ARTICLE

ydrogen bonding in aqueous solutions influences a vast

array of processes in chemistry, biology and atmospheric

science. Vibrational infra-red (IR) spectroscopy is an
established technique for investigations of hydrogen bonding,
which induces a systematic red-shift of the OH vibrational fre-
quency. Complemented by theoretical simulations, it has been
used to study variations in the local hydrogen bond (HB)
environment in liquid water’2. The spectral shape and inhomo-
geneous broadening in the IR spectrum originate not only from
inhomogeneities in the HB configurations, but also from intra-
and inter-molecular couplings. Therefore, diluted isotope sub-
stitution is regularly employed to enhance the sensitivity to HB
environment by localising the OH and OD chromophores!. In
addition, time-resolved pump-probe and multi-dimensional
correlation spectroscopy using short IR pulses! provide
insights into the structural dynamics of the HB network and the
dynamics of vibrational energy redistribution. These methods
have been used to derive information of correlation or dephasing
time and life-times, which have clarified the influence of hydro-
gen bonding on the IR spectrum. The IR intensity
enhancement for hydrogen-bonded configurations makes IR
absorption and Raman spectroscopies very useful probes of the
HB network>%>.

High-resolution resonant inelastic X-ray scattering (RIXS)
offers a complement to IR vibrational spectroscopy. However,
how sensitive RIXS and X-ray fluorescence are to HB rearran-
gements, and the underlying structural implications, is a hotly
debated®1> topic. Earlier, the long vibrational progression in
quasi-elastic RIXS has been empirically analysed; Either attrib-
uted to highly weakened/broken donating HBs selected by the
pre-edge core-excitation in the framework of a single bond
approximation!®. Or assigned to symmetric and anti-symmetric
normal modes and to OH vibrations in a broken-bond mole-
cule!l. However, a water molecule has in general two non-
equivalent OH bonds, due to the asymmetric surroundings. This
necessitates a strict coherent treatment of both oscillators as
carried out in our simulations presented below. Furthermore, the
need for analysing RIXS with a quantitative theoretical frame-
work has been demonstrated by the recent meticulous investi-
gations of gas-phase water!’-1%. Based on quantum dynamical
simulations of the nuclear wave packet, details in the RIXS
spectrum of the water molecule have been explained in terms of
the shape of the potential energy surfaces!”-1°. In particular, the
ground state potential energy curves (PECs) in gas-phase water
were recently extracted in different directions by varying the
excitation energy to scatter against different core-excited states20.
In contrast, the concept of a unique local potential energy surface
is not applicable to liquid-phase because of the fluctuating HB
network.

There are competing conceptions of the local structure of
liquid water; Either as a continuum of different HB configura-
tions?!-23, or as a mixture of two structural motifs®12. Addi-
tionally, the partial contributions of different structures to the X-
ray absorption (XAS) and IR spectra as well as the average
number of hydrogen bonds per molecule in liquid-phase are
subjects of discussion!»1>23-26_ There is an intrinsic problem with
such analyses because the relative weights of different structures
are strongly dependent on the associated transition dipole
moments?® and transition energies, both of which are derived
from theory, typically with limited accuracy?’ due to the large
system size. Admittedly, the problem is more serious in X-ray
than in IR spectroscopy because of the lower accuracy of calcu-
lation of highly excited states. Furthermore, evaluation of con-
ceptual models of broken and intact HBs is complicated, since
each experimental probe is sensitive to certain aspects of the HB
environment.

RIXS channels decaying into valence-excited states are
often broadened by variations in valence-excitation energy for
different environments?8, but may still exhibit sharp features of
core-excited state dynamics just as in gas-phase”$10:19. Hence,
there have also been attempts®1213 to investigate the local
structure in liquid water using X-ray fluorescence decay channels,
specifically the ones involving a transition between the non-
bonding 1b; lone-pair and the 1s, core-hole, for which a splitting
of the spectral feature is observed. Although a
molecular mechanism for the splitting was not explicitly given,
the role of nuclear dynamics has been established by
experimental observations’ of an isotope effect of this transition
(see also refs. $9:11),

In this study, we concentrate on the sensitivity of RIXS to the
local structure from the perspective of the local potential energy
surface. We do so by exploring the local variation of the potential
energy landscape in the ground state of liquid water directly from
RIXS measurements by using an approach based on quantum-
classical simulations of RIXS. The theoretical framework is
composed of classical ab initio molecular dynamics (MD) simu-
lations, calculation of local potential energy surfaces from the
sampled configurations, and quantum wave packet modelling of
the nuclear motion in relevant degrees of freedom (see Methods).
Thereby, we reach insights into the variations in the local HB
environment, which strongly affects the long-range part of the
OH PEC. For enhanced insight, we derive the distribution of
PECs of OH bonds with intact and broken HBs as
reconstructed from experimental RIXS data. The method of
reconstruction is inspired by the observed breakdown of the one-
to-one correspondence between RIXS peak positions and vibra-
tional quantum numbers. In contrast by analysis of the dynamic
mechanisms, we show that the splitting, emerging for pre-edge
core-excitation, has a purely dynamical origin and is primarily
sensitive to the short-range part of the PEC since the splitting is
formed at short time-scales before fragmentation. Altogether, we
established how different RIXS channels deliver separate infor-
mation; about the local structure via long-range dynamics in
quasi-elastic RIXS and about short-range dynamics, which is
much less sensitive to the structure, in the electronically inelastic
1b, channel.

Results

Gas vs. liquid-phase. Vibrationally resolved RIXS measurements
of gas-phase and liquid water, presented here (Fig. la, b), were
performed at the Swiss Light Source® (see Methods). The photon
frequency w was tuned near resonance with the lowest core-
excited state and the decay back to the ground electronic state was
studied as a function of energy loss w — w’, where ' is the fre-
quency of the emitted photon. In gas-phase, core-excitation to the
|15614a%> state leads to ultra-fast dissociation along the OH
bonds!7-1° (Fig. 2a). The propagation of the nuclear wave
packet!7-19 results in the long vibrational progression seen in
both theory and experiment. In the liquid, however, we observe a
strong shortening of the vibrational progression in comparison to
the gas-phase (Fig. la, b). Our simulations show that this
shortening arises from variations in the OH PECs, reflecting the
different local HB environments (Fig. 1c) in liquid water. These
variations affect mainly the long-range part of the OH PEC and
result in a variation of the high vibrational levels, seen in the
partial density of vibrational states of the n-th group p,(e) (see
Fig. 1d and Methods). Each group is characterised by the group
number n=mn; +n,17, where n; and n, are the vibrational
quantum numbers for the stretching modes along the OH bonds
(see Methods). In Fig. 1d, we notice for n =2 a strong overlap of
the partial density of states p, belonging to different groups.
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Fig. 1 Resonant inelastic X-ray scattering (RIXS) spectra of water in gas/liquid-phase under 4a,/pre-edge core-excitation. a Theoretical RIXS spectra of
gas-phase and liquid water vs. the energy loss (w — @’). The inset shows energy of resonant excitation in the experimental XAS of free water molecules
and liquid water (from ref.%). b Experimental RIXS spectra of gas-phase and liquid water. The inset compares experimental (circles) and theoretical
(squares) peak widths in meV as a function of the peak number m. ¢ Ab initio potential energy curves along the OH bonds for each of the 64 sampled
water molecules in liquid water. d Partial densities of the vibrational states p, (see Eq. (7)) and the total density of states p =, p, together with the RIXS
profile 6. @ Overlap of the partial RIXS cross-sections results in the formation of a background shown in yellow (compare with the overlap of the partial
densities of vibrational states d)
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Fig. 2 Comparison of resonant inelastic X-ray scattering (RIXS) under pre-edge core-excitations and infrared (IR) spectra of water in gas and liquid phases.
a Schematic representation of the RIXS transitions in terms of the gas-phase PECs, for better visualisation the vibrational levels are only qualitatively
depicted. b Direct comparison of RIXS and IR30 data for liquid water. The inset shows the first vibrationally excited peak in RIXS in both gas- and liquid-
phase. The lines depict a gaussian fit of the measured data points (circles and squares). The dashed red bars show the experimental positions of the gas-
phase symmetric (vs) and anti-symmetric (v,) stretching frequencies, while the black dashed bar shows the maximum position of the theoretical density of
states computed by Auer and Skinner#
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Hence, the adjacent density of states p,,_,(e) and p,, . (e) can
contribute to the m-th peak. The high-energy part of the spec-
trum (23eV) is smeared (Fig. la, b) by variations in local
environment into a smooth background (Fig. le). Thus, the
overlap of the partial density of states p,,, and the related increase
in peak width (see inset in Fig. 1b), qualitatively explains the
shortening of the spectrum.

As mentioned above, RIXS provides a vibrational probe
complementary to IR spectroscopy. Therefore, it is pertinent to
compare the RIXS and IR spectra of water (Fig. 2). Contrary to
RIXS, the main contribution in IR absorption originates from the
0 - 1 dipole allowed OH transition (higher lying dipole forbidden
IR transitions are more than two orders of magnitude smaller3).
Hence, the majority of IR studies of liquid water!:? has focused
only on this transition, which probes the bottom of the OH
potential well. One can see that the liquid-gas shift in IR
absorption (= 280cm™!) is significantly larger than in RIXS
(= 140 cm~!) and the RIXS and IR peaks are shifted in opposite
directions with respect to the theoretically derived maximum of
the OH vibrational density of states* at =~ 3490 cm~! (Fig. 2b).

The sensitivity of IR spectroscopy to a large extent stems from the
strong dependence of the IR intensity of the OH stretch on the
hydrogen bond environment?*°, The IR absorption transition
dipoles of the OH stretching modes with a broken HB (located in the
high-frequency region) are significantly smaller than those of
hydrogen-bonded OH modes (located in the low-frequency
region)®. The situation is reversed in RIXS, where the molecules
with a weak/broken hydrogen bond are excited preferentially. This
explains the opposite shifts of the RIXS and IR absorption
resonances with respect to the maximum of the density of
vibrational states (see inset in Fig. 2b). Thus, IR and RIXS
spectroscopy complement each other and deliver structural
information already at the lowest 0 > 1 transition: this OH transition
in IR absorption evidences the existence of structures with strong HB
contrary to RIXS where the peak position of the 0> 1 transition is
associated with both broken and strong HBs structures (see next
Section and Fig. 3c). One should mention that IR Raman spectra®>®>
show a similar trend as the IR absorption spectra.

There is another effect intrinsic to liquid-phase, namely
motional narrowing caused by the fluctuations in the environ-
ment!31, which can affect the spectral shape of individual
vibrational peaks of quasi-elastic RIXS similarly to IR absorption,
since both RIXS and IR end up in the same final state. This
dynamical effect is neglected here because we use a static
environment (see Methods). To justify the static approximation,
it is worth noting that the broadening of a vibrational resonance
has two representative limits defined by the dimensionless
parameter Awt., where Aw is the variance of frequency
fluctuation in the liquid, while 7. is the decay time of the
frequency fluctuation correlation function32. In the regime of
slow modulation (static regime) Awt, > 1 the line width is large
and is given by inhomogeneous broadening. The regime of
motional narrowing occurs in the opposite case of fast
modulation Awt, < 1 in which the line width is defined by the
homogeneous broadening. According to two-dimensional (2D)
IR spectroscopy T.= 176 fs for water33. MD simulations3! have
shown that bath fluctuations reduce the spectral width of the
main OH IR peak (n=1) by 30% for a value of Awt.~ 1. Both
experiment and simulations (Fig. 1b) show that Aw grows rapidly
on the way to higher vibrational resonances (main focus of our
study) where Awt,>1 and the regime of motional narrowing is
switched to the static regime.

Role of asymmetric bonds. It has been argued that oxygen K-
edge X-ray spectra are sensitive to the local structure of the liquid

water®12:21,22.24  Here, we investigate the sensitivity of RIXS to
hydrogen bonding based on the classification of “double-donor”
(D2) and “single-donor” (D1) structures (see Supplementary
Fig. 1), in which either both OH groups, or just one OH group, in
the water molecule donate a hydrogen bond (see Methods). The
pre-edge region in the XAS of liquid water has been ascribed to
excitation of molecules in asymmetric HB environments (D1),
where the assumed selectivity depends on the XAS simulation
method?434-36, The employed excited core-hole (XCH) approx-
imation3>37 vyields enhanced transition dipole moments for
D1 structures. Hence, the partial RIXS cross-sections op; and op,
in Fig. 3b, ¢ contribute almost equally to the RIXS profile, even
though the D1 structures are in minority (only 20%) in our MD
simulation (see Methods). The progression in op, is red-shifted
with respect to ops, since the D2 structures on average experience
shallower potentials than the D1 structures. This red-shift toge-
ther with their intrinsic spread allow us to explain the formation
of a background in the total profile 0= op; + op, (see Figs. le
and 3d).

In liquid water, vibrational modes are usually localised on
the OH bonds due to the asymmetry of the local
environment. The first impression is that these localised modes
can be treated independently  within  single-bond
approximation. However, because of the shared core-excitation,
both OH bonds are coherently excited with the same
transition dipole moment in the course of RIXS as illustrated
by the nuclear wave packet in Fig. 3a. Even a molecule with one
broken HB has a strong hydrogen-bonded OH stretch
associated with it. As a consequence, the first RIXS peak of the
D1 structures in Fig. 1c bears the signatures of both intact and
broken HBs and is broader than for the D2 structures. Thus, our
ab initio RIXS analysis taking into account both OH stretches
does not support either a single-bond model or the related earlier
empirical interpretations based only on the OH stretch with a
broken HB!® (see Supplementary Fig. 2 and dashed profile in
Fig. 3¢).

The simulated RIXS spectrum of an individual D1 configura-
tion (Fig. 3d) differs very much from the one in gas-phase
(Fig. 1). The asymmetric environment leads to a complicated-
spectrum formed by single-bond excitations ((n;, 0) and (0, 1,))
and mixed bond excitations (rn;, n,). We see from Fig. 3e that the
eigenvalues  of the steep  potential (weak  HB)
approximately match the peak positions of the total
sampled RIXS spectrum in contrast to the shallow potential
(strong HB), which shows considerable deviations as even
two eigenvalues may belong to the same peak (Fig. 3d). The
neglect of this effect results in an artificially narrow
distribution of OH potentials (see below and Fig. 4a) not
reproducing the broad distribution of the OH PECs of liquid
water seen in Fig. 3e. Our solution of the inverse problem of
reconstruction of fluctuating local PECs captures the observed
breakdown of the one-to-one correspondence (assumed in
refs. 1116) between RIXS peak positions and vibrational quantum
numbers.

Confidence intervals for OH potentials. A key insight from the
present simulations is that to extract potential information, we
need to design a method that allows for more than one vibra-
tional eigenvalue to be located within the energy range around a
given m-th peak in the observed RIXS progression. In a con-
servative attempt to estimate the confidence intervals (see Sup-
plementary Fig. 3), we define this energy range Ag,), as the spacing
between two adjacent minima of this peak and introduce the
distribution of the number of vibrational eigenvalues per peak k,,
ordered according to the peak’s number (k;k,ksksksks). For
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Fig. 3 Role of coherent excitation of both OH bonds. a The nuclear core-excited wave packet squared shows coherent excitation of both OH bonds in a D2
configuration. b Partial resonant inelastic X-ray scattering (RIXS) cross-sections op; and op». € Partial contributions to the RIXS peak m =1. The dashed
curve shows the result from the single bond approximation agy simulated including only the single OH stretches with a broken HB. The vertical green bar
shows the theoretical peak position of the RIXS in gas-phase water. Current DFT (BLYP) description gives a slight red-shift of the peaks relative to
experiment and to high-level calculations'’~19. d Total RIXS profile (blue) and assignment of RIXS spectrum (yellow) of a single asymmetric D1 structure.
e All OH potentials (blue) of the sampled configurations. Solid red and dashed green curves show the steep (no HB) and shallow (HB) OH potentials of the
D1 structure in d. Subsets of eigenvalues €n0 (solid red) and €o.n, (dashed green) in d, e assign the single bond excitations associated with potentials of
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Fig. 4 Confidence intervals for OH potentials extracted from the experimental resonant inelastic X-ray scattering (RIXS) spectrum. a Confidence interval
for the PECs in the case of weak HB, corresponding to the constraint in Eg. (1); b Confidence interval for PECs of OH bonds in the case of stronger HB (Eq.
(2)). € The whole set of the PECs obtained by combining a, b

example eigenstates can belong to a given peak in the spectrum. The

variation of the local environment leads to a variation in the

weakorno HB  (111111),  (111112), (1) eigenvalue distribution, which depends on the shape of the OH
PEC: There is only one vibrational level within each peak for the
strong HB (112212), (112222), --- (2) steep potentials (weak or no-HB), the only exception being the

peaks with m>6 (see Eq. (1) and Fig. 3d). In contrast, two

Our simulations show that no more than two vibrational vibrational levels of a shallow potential (HB) can lie within the
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phase (c¢) spectra display a nondispersive component (pseudo-atomic peak) and a molecular band following the Raman dispersion law. e illustrates

schematically how the pseudo-atomic peak is formed near equilibrium (R=3a.u.) as the PECs of the core-excited U.(R) and final U;(R) states become
almost parallel: AU = U.(R) — Uy(R) ~ const. The parameter A ~ 0.45¢eV is the splitting between molecular and pseudo-atomic peaks on top of the XAS

resonance

m-th peak, except for m =1 (see Eq. (2) and Fig. 3d). Since the
eigenvalues belonging to the m-th peak are only confined to a Ae,,,
interval, the constraints (Eqs. (1) and (2)) generate a distribution
of PECs, which defines the confidence interval of the OH
potentials. To extract the confidence interval we designed a
procedure (see Methods) using a genetic algorithm3® (see Sup-
plementary Fig. 4), which was validated (See Supplementary
Fig. 5) for the theoretical RIXS spectrum of liquid water (Fig. 1a)
and then applied to the experimental RIXS spectrum (Fig. 1b) to
extract a distribution of PECs in liquid water with a minimal
model dependence. The constraint given by Eq. (1) alone results
in a narrow confidence interval (Fig. 4a), which is associated
solely with the OH potentials weakly affected by HB (steep
potentials). In contrast, the constraint defined in Eq. (2) results in
a much wider distribution (Fig. 4b) related to various HB con-
figurations. The total reconstructed confidence interval (Fig. 4c)
comprises both steep and shallow PECs. Thus, in spite of the
inherent chaotic nature of liquid water, RIXS data provides the
possibility to, within confidence intervals, separately determine
the behaviour of PECs for OH groups involved in weak and
strong HBs.

Dynamical origin of the 1b, splitting. The local HB environment
has also been probed in electronically inelastic processes®~12;

Decay channels in which the 1so core-hole is filled by a transition
from the occupied lone-pair orbital 1b;. This transition forms a
split peak (Fig. 5), which has been attributed either to two distinct
ground state structural motifs®12 or to nuclear motion after core-
excitation’ 11, In spite of experimental evidence of the dynamical
nature of discussed splitting, there has been no microscopic
explanation of the mechanism of this phenomenon. This moti-
vates us to perform the analysis of the problem in terms of OH
PECs and quantum wave packet propagation. Here, we investigate
the emergence of the splitting at the pre-edge resonance by
looking at the evolution of the RIXS spectrum as a function of
photon energy detuning Q) from the top of the pre-edge peak. The
extent of nuclear dynamics can be controlled via the effective

scattering duration time*® 7= 1/v/Q? +T?, which reaches a
maximum ['~! = 8 fs at the resonance, Q = 0.

The experimental RIXS spectra shown in Fig. 5 display a
striking quantitative coincidence of the w-dependence of the 1b,
splitting in liquid and gas phases. This is a clear indication that
the splitting is of the same dynamical origin as recently
established for the gas-phase! associated with the different
dispersion laws of the pseudo-atomic and molecular peaks. The
pseudo-atomic peak is formed due to the similar non-bonding
characters of 1sp and lone-pair 1b; orbitals, which make the
potential surfaces of the core-excited and final states almost
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parallel already at moderate distortions (see Fig. 5e). Figure 5c¢
shows some disagreement between theory and experiment for the
gas-phase RIXS spectra. This is due to the limited accuracy of the
calculated OH potentials for the core-excited state and the final
states. Environment-dependent fluctuations in emission energy
near equilibrium can be characterised by a distribution function
p(w] — w’). Thus, we can approximately reconstruct the liquid
spectrum 0Ojiquia(w’, @) by convolution of the experimental gas-
phase spectrum 0y, (w’, @) with p(w; — @) (see Methods). In
Fig. 5, the reconstructed spectrum 0j;quia(@’, w) is shown to be in
good agreement with the experimental spectrum of liquid water.
The employed convolution ignores slight variation of the short-
range part of OH potentials for different structures. This is the
main reason for the remaining disagreement between theory and
experiment seen in Fig. 5b.

Despite that the detailed mechanism of the discussed splitting
in the main- and post-edge regions (and for non-resonant core-
excitations) is beyond the scope of our article, it deserves a special
comment. According to DFT-based MD simulations, the doublet
in the region of the 1b; peak for non-resonant excitations is
related to the 3a, and 1b, levels, which approach each other in the
course of the OH bond elongation in the core-ionised state, which
as confirmed by the simulations is dissociative in the local
hydrogen bond environment in liquid water®?. It is important to
notice that this splitting for higher excitation energies is absent in
the gas-phase!? where (contrary to liquid-phase) the OH
potential is bound?.

To conclude, since both molecular and pseudo-atomic 1b;
peaks arise from decay near the equilibrium, the splitting under
4a, core-excitation is not caused by different HB environments
(see also ref. 8) and can not be used as fingerprint of specific local
structure.

Discussion

In conclusion, we present a comprehensive ab initio analysis of
the vibrational RIXS spectrum of water and show that the
observed progression arises from coherent excitation of both OH
bonds of a water molecule embedded in different local environ-
ments during the scattering process. Our results indicate that a
broad distribution of different configurations and hence poten-
tials contribute to quasi-elastic RIXS at the Ols X-ray absorption
pre-edge instead of a very narrow one as previously suggested!°.
Fluctuation of the OH potentials with strong HBs results in large
variations in the energy of highly excited vibrational levels, hence
leading to broadening of the peaks and ultimately to the short-
ening of the vibrational progression of RIXS in liquid water with
respect to the gas-phase. The distribution of PECs for OH bonds
with weak and strong HB have been derived from experimental
RIXS to characterise HB strength. Weak HBs lead to a narrower
distribution of OH potentials, while strong HBs lead to a much
broader distribution. We describe the molecular mechanism,
which evidences that the lone-pair (1b;) peak splitting is of
dynamical origin, corroborating previous experimental observa-
tions of the large isotope effect on the 1b; peak”!0 and contra-
dicting a structural interpretation®!2 of the splitting.

Methods

Experiment. The experimental RIXS spectra presented here were measured with
the SAXES spectrometer?? at the RIXS end station of the ADRESS beam line” at
the Swiss Light Source at the Paul Scherrer Institut. We utilised a flow-cell
separating the sample from the vacuum by a SisN, window of 150 nm thickness
with a ~10 nm Au coating. The energy calibration was based on the O, RIXS
spectrum®!, Due to breakdown of the windows in irradiation, the cell was moved
every 10 min. To avoid errors from this procedure, the spectra of these individual
scans were shifted to same energy scale by using a fit to the elastic line before
joining them to a single one for further data processing. The experimental quasi-
elastic RIXS spectrum of liquid water!” for excitation energy tuned on the pre-edge

peak (w=535eV) is compared with the gas-phase spectrum excited on the 4a,
resonance (w = 534.1 eV1) in Figs. 1 and 2. The resonantly scattered photons were
detected at 90° angle from the incoming photons with a combined experimental
resolution of 40 meV for liquid water and 75 meV for gas-phase water, respectively.
The experimental data shown in Fig. 5 for liquid-phase are new except two spectra
for w =534 and 535 eV taken from ref. !°. These data are compared with the gas-
phase spectral®.

Hybrid quantum-classical theory of RIXS. The simulations of the RIXS spectrum
of liquid water were carried out employing a two level classical-quantum approach.
First, the liquid-phase was simulated using ab initio MD of a periodic 64-molecule
system (as described below). On the second step, cuts through the ground and core-
excited potential energy surfaces along both OH bonds were sampled over all 64 water
molecules in a snapshot from the MD simulation. These potentials energy curves were
used in quantum simulations of the partial RIXS cross-sections ox(w, w’) for each k-th
molecule in the configuration. The total RIXS cross-section of the scattering from the
ground state (0) via the core-excited state (c) to the final electronic state (f) was
calculated as the sum over these partial contributions

64

o(@,w) =Y o(w,w). 3)

=1

=

In order to compute the vibrationally resolved RIXS, we use a quantum description
of the OH vibrations in liquid water. The Hamiltonian, in valence coordinates, on
the electronic state i =0, ¢, f for each molecule

cos 6 ;
T, + V(R Ry), @)

W = —i(aﬁl 1) -

is approximated by assuming an independent bond approximation, Vi(R;,R,) =
Vi(R,, R + Vi(R{Y, R,) — Vi(RY, RY), with a frozen local environment, where
R, and R, are the OH bond lengths of the k-th molecule; the label (eq) marks the
equilibrium position; y = myme/(my + me) where my and mg are the masses of
the hydrogen and oxygen atoms; 6 is the equilibrium #HOH angle; and V; is the
molecular potential along a OH bond of the k-th molecule in the configuration on
the electronic state |i). The ground state vibrational spectrum of molecule k is then
given by the time independent Schrédinger equation h2|¢>”‘m2> = €y |Bu )
where ¢, is the 2D vibrational eigenstate with the respective energy €, ,, .

The single molecule cross-sections were computed using the quantum wave
packet formalism!7-18, as the half-Fourier transform of the auto-correlation
function
¢ dta[*

" e (5)

xRe i dee! 7t w (0)] (1)

o (w,0) =
defined by the nuclear wave packets
"0 i(w—wk +ek  +i
[¥(0) = [y dee eat oty (1),

. 6
[w()) = 50| ), 1) = e I 0)).. ©

Here, d;"j is the transition dipole moment, at the equilibrium geometry, between the
electronic states i and j for the k-th molecule. In liquid-phase, the scattered X-ray
photons are very likely to be reabsorbed by nearby molecules. We account for this
effect by carrying out a self-absorption correction in the same fashion as in
previous work!8:28,

For analysis of the RIXS cross-section, we compare to the density of vibrational
states

p0=3 3 ofc-d, +dy). )

k=1 n+ny=n

where O(x) = exp(—xz/tﬁz)/ﬁ\/ﬁ, §=0.01eV, n, and n, are the vibrational
quantum numbers for the stretching modes along the OH bonds in the k-th water
molecule.

To reconstruct the liquid spectrum ojiquia(w’, w) from the one in gas-phase we
convolute the experimental gas-phase spectrum oy, (w’, w) with the distribution
function p(w] — w’)

@) % [ 0w} @)pla - w)dayhskip — 3, ®)

where p(w] — @) = exp(—4In2(w] — ')*/y?). The employed structural
inhomogeneous broadening y(FWHM) = 0.35 eV is in reasonable agreement with

the 0.45 eV value obtained using molecular dynamics simulations!2.
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Computational details. For consistency of analysis, the wave packet simulations
were performed on the same configuration as our previously classical spectrum
simulations®? of liquid water, which was obtained from ab initio MD simulations
with periodic boundary conditions in a cubic simulation cell (a = 12.4170 A) in the
NVE ensemble in the CPMD programme*? using the gradient-corrected BLYP
functional#># and a 85 Ry kinetic energy cutoff for the plane wave expansion of
the Kohn-Sham wave-functions, in combination with a pseudo-potential descrip-
tion. (see refs. 89 for further details and results of classical simulations.)

The dissociative 4a, band was modelled with the excited core-hole method
(XCH)%, based on DFT in which the lowest lying core-excited state forms the pre-
edge peak in both gas-phase and liquid water. This level of theory has already been
shown to accurately reproduce the pre-edge feature of XAS®3% of liquid water,
which is the main focus of this article. The molecular potentials of and transition
dipole moment between the ground state and the lowest Ols core-excited state
were computed for each one of the 64 molecules in the sampled configuration.
These unrestricted all-electron DFT calculations were performed using the GAPW
method in CP2K3745:46, employing the BLYP functional*3#4, Ahlrichs-def2-QZVP
basis sets?” and a plane wave cutoff of 300 Ry for the soft part of the density.

Extraction of confidence interval for OH potentials. The potential reconstruc-
tion procedure was based on a genetic algorithm (GA) and implemented with the
help of the deap python library>®. The individuals were chosen to be a set of
parameters, which define the model potential along the OH bond. To obtain the
confidence interval for the OH potentials, from the experimental RIXS data, we
fitted the parameters (B, 8, &, D) of the modified Morse potential

V(R) = Vyy(R) + B,V (R) = D(1 — &%)’ (9)

using the GA38 to search for potentials that satisfy the constraints defined by Eqs.
(1) and (2) and described in the surrounding text.

A random initial population (distribution of potentials) is then generated at the
initial step and the evolutionary operations are applied to the population until
convergence is reached as it is illustrated in Supplementary Fig. 4. The fitness
criterion of our GA was based on the concept of a “vibrational eigenvalue
distribution”, by which we consider whether a given eigenvalue lies within the
width of a given peak Ag,, in the RIXS spectrum (see Supplementary Fig. 3), we
consider the first six peaks (m =1, ..., 6) of the experimental RIXS spectrum
(which are the most relevant according to our analysis).

Proof of principle. To verify the suggested reconstruction technique, it is natural to
apply it to the theoretical RIXS spectrum and to compare the obtained potentials to
the original ones used to compute RIXS. The results of these test calculations
depicted in Supplementary Fig. 5 shows a good agreement between the extracted
confidence interval and true distribution of the OH potentials. Clearly, the method
will not recover exactly the set of original potentials, but the spread in the dis-
tribution is reproduced.

Local structure classification. Even though we recognise that hydrogen bonding is
not universally defined?!-2348-52 we employ a definition based on geometrical
criteria449, In our article, we use a geometrical classification of the HB (see Sup-
plementary Fig. 1), which is similar to ref. 24 For a given molecule, we introduce the
oxygen-oxygen radius vector Rop and the intramolecular OH bond vectors R; (i =
1, 2) so that the angle ® between these vectors is given as ﬁoo -R, = cos © and the
oxygen-oxygen distance is given as Roo = |[Roo|- The set of structures, which
satisfy the constraint

Roo<3.3\AA, ©<30° (10)
only for one OH bond we refer to as D1 (single-donor) structures while the rest of
the structures with both OH bonds forming HBs are referred to as D2 (double-
donor) structures.

Choice of transition dipole moment model. Extraction of local structural infor-
mation from RIXS measurements of liquids is a widely discussed problem. Within
the used MD simulations we obtained a proportion of 20% D1 structure and 80%
D2 structures using the geometrical criteria introduced in the previous section. To
check whether our combined theoretical/experimental analysis of RIXS can shed
light on the relative contribution of these structures, we performed simulations of
the RIXS profile for excitation at the pre-edge region, related to the dissociative
core-excited state, for the studied configuration using different techniques for
computing transition dipole moments. We find that the relative contributions of
D1 and D2 structures are very sensitive to the model used to compute the tran-
sition dipole moments (see Supplementary Fig. 6).

In an accentuated argument, let us imagine that the transition dipole moments
associated with D1 structures are much larger in magnitude than the ones for
D2 structures. In such case, we would draw the erroneous conclusion that
D1 structures dominate liquid water, when in fact it would only mean that RIXS
would not “see” the D2 structures. One should mention that similar questions are
raised in XAS studies of liquid water®?42534, Supplementary Fig. 6 displays this

problem more accurately. The figure presents the simulation results for three
techniques of calculation: One of which exaggerates the transition dipole moment
of D1 structures (the half core-hole (HCH) method37), and two of which have a
more balanced distribution (the full core-hole (FCH)37 and XCH methods). These
three different techniques give the following relative contribution D1/D2 to the
total RIXS profile: HCH 86%/14%, FCH 53%/47% and XCH 57%/43%. We see that
86% of D1 contribution in RIXS does not reflect the actual 20% fraction of

D1 structures in the configuration obtained from the MD simulations. In spite of
this fact, Supplementary Fig. 6 shows that the total RIXS spectra for these three
density functional theory (DFT)-based techniques are nearly the same. Thus, we
can not draw definite conclusions about the overall local structure in liquid water
from RIXS data, but we can clearly conclude that the configurations, which are
actually probed at the XAS pre-edge, have a broad distribution of ground potential
shapes.

Role of the single-bond approximation on RIXS. Now, let us turn our attention
to the single-bond approximation usually used in analysis of RIXS of liquid water.
In earlier studies' 119, it is suggested that the vibrational progression seen in RIXS
may be understood simply in terms of a Morse potential along a single OH bond,
namely the one with a broken HB, which exists only in the D1 subset. As one can
see from Supplementary Fig. la this approximation o3, does not match with the
strict theoretical RIXS profile, o.

The single-bond approximation, which includes all OH bonds (broken and
intact) as well as all structures D1 and D2 gives even worse agreement
(Supplementary Fig. 1b). The reason for this discrepancy is that the single bond
approximation neglects the fact that the both OH bonds are excited in the
scattering process coherently (this is seen in Fig. 3a, ¢ and is accounted for in the
strict RIXS profile) resulting in a manifold of mixed excitations.

Data availability
The computer code and datasets generated and analysed during the current study are
available from the corresponding authors on reasonable request.
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