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Abstract 

Discovery of electrocatalytic materials for high-performance energy conversion and storage applications relies 
on the adequate characterization of their intrinsic activity, which is currently hindered by the dearth of a protocol 
for consistent and precise determination of double layer capacitance (CDL). Herein, we propose a seven-step 
method that aims to determine CDL reliably by scan rate-dependent cyclic voltammetry that considers aspects 
that strongly influence the outcome of the analysis, including (1) selection of a suitable measuring window, (2) 
the uncompensated resistance, (3) optimization of measuring settings, (4) data acquisition, (5) selection of data 
suitable for analysis, (6) extraction of the desired information, and (7) validation of the results. To illustrate the 
proposed method, two systems were studied: a resistor-capacitor electric circuit and a glassy carbon disk in an 
electrochemical cell. With these studies it is demonstrated that when any of the mentioned steps of the procedure 
are neglected, substantial deviations of the results are observed with misestimations as large as 61% in the case 
of the investigated electrochemical system. Moreover, we propose allometric regression as a more suitable model 
than linear regression for the determination of CDL for both the ideal and the non-ideal systems investigated. We 
stress the importance of assessing the accuracy of not only highly specialized electrochemical methods, but also 
of those that are well-known and commonly used as it is the case of the voltammetric methods. The procedure 
proposed herein is not limited to the determination of CDL, but can be effectively applied to any other analysis 
that aims to deliver quantitative results via voltammetric methods, which is crucial for the study of kinetic and 
diffusion phenomena in electrochemical systems. 
 

Keywords: double layer capacitance, cyclic voltammetry, benchmarking, electrocatalysis, fitting model 

 

1. Introduction 

A sustainable supply of clean, affordable energy relies not only on the efficient capture of energy originated 
from natural, inexhaustible sources such as sunlight or wind, but also on the possibility of its conversion and 
storage, so that it can be supplied and utilized when and where it is needed [1]. Diverse electrochemical systems, 
including water electrolyzers, metal-air batteries and fuel cells, are environmentally-friendly technologies that 
represent a potentially viable path towards sustainable energy supply. However, despite their large development 
during the last few years, these devices are not yet able to compete against fossil fuel-based technologies on an 
industrial scale due to their comparatively high energy input requirements, low efficiencies and high costs [2]. 
Hence, finding suitable electrode materials represents currently one of the main challenges in the field of 
electrocatalysis. This endeavor has led to the discovery of an extensive variety of materials over the past few 
decades. For that reason, refinement and standardization of the electrochemical methods used for their 
investigation is of utmost importance, not only for ensuring a proper assessment of their intrinsic catalytic 
properties, but also to enable a fair comparability between results obtained with different setups and/or in different 
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laboratories. Guidelines and benchmark protocols for the evaluation of activity, selectivity and/or durability of 
electrocatalytic materials have been proposed in the framework of different electrochemical reactions, including 
those related to water electrolysis, and fuel cell technologies [3–6], as well as electrochemical processes of 
increasing environmental relevance such as the electroreduction of nitrogen [7–9] and of carbon dioxide [10–12]. 
Yet, a careful revision of how to adequately conduct and report electrochemical methods–as simple and well-
know as cyclic or linear sweep voltammetries–is still necessary to achieve high-quality investigations. To illustrate 
the severity of this issue, we show herein the specific case of scan rate-dependent cyclic voltammetry, being a 
method recommended, though only briefly described, by various benchmark protocols to determine double layer 
capacitance of electrode surfaces.  

Specific catalytic activity is typically reported in terms of current density, that is, current normalized by area 
unit. It has been broadly demonstrated that the geometric area of an electrode is an inadequate metric for 
normalization, as it introduces large errors by neglecting morphology, particle size and porosity of the investigated 
materials [13, 14]. An alternative parameter used for normalization of current is the surface area assessed by 
microscopic (e.g., atomic force microscopy) and gas adsorption techniques (e.g., nitrogen or hydrogen 
adsorption), in the cases of non-porous catalysts and of materials with high surface areas, respectively. However, 
such techniques are unable to discriminate electrically conductive components from non-conductive ones, as well 
as portions of the surface that are accessible to the electrolyte from those which are not [14–16]. Thereby, a more 
suitable parameter is the electrochemically active surface area (ECSA [=] cm2), which allows to compare catalysts 
of different structural properties from an electrochemical standpoint. ECSA can be determined experimentally 
from the coulombic charge measured during characteristic adsorption/desorption reactions (e.g., hydrogen 
underpotential deposition or CO stripping), nonetheless, a major disadvantage of these methods is that they are 
only applicable to a limited number of materials, mainly metals [14, 17].  

The ECSA can be determined from the double layer capacitance (CDL [=] F) and the specific capacitance of 
any investigated electrode material (CS [=] F cm-2) according to Equation 1  [16]. 

ECSA ൌ  େీై

େ౏
    (Eq. 1) 

Determination of CS has been identified as one of the main challenges for the accurate assessment of ECSA 
[14]. Since its value is typically unknown, it has become a common practice to use a single CS value to obtain 
ECSA for any material independently of its nature, evidently leading to largely under or overestimated ECSA 
values [15]. Yet, with CS established as the main source of inaccuracy for ECSA, the importance of the accurate 
determination of CDL is generally overlooked. Moreover, even if CS is not known relative changes in ECSA can 
be observed by monitoring accurately CDL, and it has been recently proposed that, instead of using ECSA, the 
catalytic activity could be reported in terms of net measured current along with the current normalized by 
geometric area and by CDL [18]. Such an approach, though managing to circumvent the problematic need for CS, 
still requires knowing CDL accurately to ensure its reliability and, thus, comparability between different catalytic 
materials. In this context, we propose herein a seven-step methodology for the determination of CDL by scan rate-
dependent cyclic voltammetry that allows, firstly, to identify optimal measurement parameters for high-quality 
data collection, and secondly, to perform a high-quality data analysis to ensure high reliability. We demonstrate 
the proposed methodology and possible pitfalls at each step by means of two different systems: an electrical circuit 
where the investigated element is a capacitor, and an electrochemical cell where the investigated surface is a 
smooth glassy carbon disk immersed in 0.1 M NaOH solution.  

2. Methods 

Two different setups were used for the electric/electrochemical experiments. The first setup consisted of a 
resistor-capacitor electric circuit (RC-circuit) built with two 100  metal film resistors (± 1% tolerance, Yageo) 
connected in parallel for a total resistance of 50 . The resistors were soldered in series with two 10 F solid 
tantalum resin dipped radial capacitors (± 10% tolerance, rated voltage 35 V, AVX) parallel to each other, for a 
total capacitance of 20 F. The circuit was kept in a Faraday cage during the measurements. The second setup 
was a three-electrode configuration single-compartment electrochemical cell (EC-cell) made from polymethyl 
pentene, where a glassy carbon electrode of 4 mm diameter was used as the working electrode. Prior to the 
measurements, the working electrode was polished with 0.05 m alumina paste (ALS Inc.) and rinsed with water 
and ethanol. A Hg|HgO electrode (ALS Inc.) and a coiled platinum wire were used as the reference and the counter 
electrodes, respectively. The measurements were conducted in argon-purged 0.1 M NaOH aqueous solution 
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(Sigma-Aldrich) as electrolyte. The EC-cell was kept inside a KB240 climate chamber (Binder) to ensure a 
controlled temperature of 25 °C during the measurements. For both setups, namely the RC-circuit and the EC-
cell, a Reference 600+ potentiostat (Gamry) was used to control the applied potentials. The offsets of the current 
ranges and cable capacitance were corrected according to the manufacturer’s calibration procedure. Cyclic 
voltammograms (CVs) were recorded within selected potential windows using scan rate values in the range from 
0.01 to 10 V s-1. Unless indicated differently, the data was collected by sampling during the entire voltage step of 
the digital staircase that approximates an analog ramp (“surface sampling mode”) using a step size of 0.2 mV, 
optimized current limit, and optimized dynamic iR-drop compensation (positive feedback). In the case of the EC-
cell, 5 consecutive CVs were recorded for each experiment, and the measured current values corresponding to 
double layer charging were extracted solely from the last cycle. Data obtained by cyclic voltammetry was 
processed with the software Origin 9.5 (OriginLab Corporation), using either linear or allometric regression 
models to fit data from current vs scan rate plots. Electrochemical impedance spectroscopy (EIS) was conducted 
in the frequency range from 100 to 0.05 kHz with 10 mV (RMS) amplitude at open circuit. EIS spectra were 
analyzed and/or simulated using the software Echem Analyst (Gamry). 

3. Determination of double layer capacitance 

When an electrode surface is subjected to a voltage ramp, a steady-state capacitive current is observed in a 
short time (iC) if the only process taking place within the voltage range is the charging of the double layer, that is, 
movement of ions on either side of an electrode/electrolyte interface. For ideal capacitors, iC is related to the 
capacitance (C) and to the scan rate () as described in Equation 2 [19]. 

 iେ ൌ ν ∙ C     (Eq. 2) 
A common method for obtaining the double layer capacitance (CDL) consists in recording cyclic 

voltammograms at various scan rates within a potential region where no redox processes take place, extracting iC 
from the anodic and cathodic scans of the recorded voltammograms, and subsequently extracting CDL from the 
slope of the resulting iC vs  plot. CDL can also be obtained by means of electrochemical impedance spectroscopy 
(EIS), provided that a suitable equivalent circuit was selected [19, 20]. However, we focus herein in its 
determination by cyclic voltammetry, stressing its advantage as a more widely available method than EIS.  

 
Figure 1. (a) Electrical diagram and (b) photograph corresponding to the RC-circuit used in this work.  

(c) Nyquist plot of the built RC-circuit obtained by electrochemical impedance spectroscopy at open circuit 
voltage with an amplitude of 10 mV (RMS), compared with a simulated ideal equivalent circuit 
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(50 resistance in series with 20 F capacitor). (d) Seven-step procedure for ensuring reliable cyclic 
voltammetry-based measurements. 

Since our purpose was to establish a reliable methodology for the careful determination of double layer 
capacitance via cyclic voltammetry, it was necessary to study a system that delivers a predictable outcome. The 
selected system was an electric circuit consisting of standard electric elements with a total capacitance of 20 F 
in series with 50  resistance (Figure 1a and b). Such a system, hereafter denoted as RC-circuit, was convenient 
because on the one hand, the capacitance value is known, and on the other hand, the circuit is expected to exhibit 
a behavior close to ideal, thus allowing us to systematically observe the different steps of the experimental 
procedure and data analysis in relation to the outcome of the analysis. A comparison between the Nyquist plot of 
the built RC-circuit obtained by electrochemical impedance spectroscopy, and a simulated plot for the equivalent 
ideal circuit is shown in Figure 1c, demonstrating that the response of the RC-circuit is indeed close to ideal.  

Being aware that electrochemical systems generally exhibit considerably more complex behaviors than ideal 
electric circuits [21, 22], we selected and investigated a second system which involved an electrode/electrolyte 
interface. This system, hereafter denoted as EC-cell, consisted of an electrochemical cell where a polished glassy 
carbon disk immersed in 0.1 M NaOH aqueous solution was the subject of study. With the aid of the two selected 
systems, namely the RC-circuit and the EC-cell, we were able to identify, firstly, sources of error that are easy to 
overlook, and secondly, strategies to circumvent them, integrating these strategies in the seven-step protocol 
illustrated in Figure 1d. In the following subsections, each of the seven steps is described and discussed, and their 
importance in terms of their impact on the outcome of the analysis is clearly illustrated with diverse measurements 
conducted using the two selected model systems.    

Step 1: Determine suitable measurement window 

When conducting cyclic voltammetry, two main parameters are to be chosen: (i) the measurement window, 
which is set by the lower and upper potential limits of the voltammogram, and (ii) the speed at which the potential 
is varied within these two limits, that is, the scan rate. The first step of the procedure focuses on the first of the 
two parameters. The second parameter will be discussed in detail later on (Step 5).  

For the determination of CDL, it is necessary to ensure that the data is recorded within a potential region where 
the charging of the double layer is the main contribution to the measured net current while current contributions 
originated from other electrochemical processes, including redox reactions and adsorption/desorption processes, 
are negligible. This potential region can be identified by recording a voltammogram in a relatively wide potential 
range. It is recommended to use a slow scan rate between 1 and 10 mV s-1 in order to minimize capacitive 
contributions (Equation 2), thus facilitating the observation of redox processes. Note, however, that redox 
processes become less intense as the scan rate decreases, which on the one hand makes it difficult to distinguish 
them and on the other hand emphasizes measurement artifacts more prominently [23]. In addition to this, it is 
advised to conduct this experiment after recording consecutive CVs until a steady response is observed as a 
preconditioning step. In the case of the RC-circuit, virtually any potential window can be used for the 
determination of its capacitance as it exhibits the rectangular profile expected for an ideal capacitor [24] 
throughout the entire window, limited only by the potentiostat capabilities (Figure 2a). In contrast, for 
electrochemical systems, the potential range suitable for the measurement depends on the nature of the electrode 
and electrolyte used, and corresponds to the window where neither the electrode nor the electrolyte undergoes 
electrochemical processes different to double layer charging. For aqueous systems, the cathodic and anodic limits 
of the potential region where the electrolyte does not undergo electrochemical reactions are set by the hydrogen 
evolution (HER) and the oxygen evolution (OER) reactions, respectively, displaying a stability window of at least 
1.23 V. This window can be enlarged by use of “water-in-salt”-type electrolytes to achieve stability windows as 
large as 3 V [25, 26]. However, the potential window suitable for determining double layer capacitance is 
shortened considerably by the presence of any species in the electrolyte that may undergo redox processes at the 
electrode/electrolyte interface [27], e.g. reduction of dissolved oxygen (ORR), or adsorption/desorption of ions in 
the solution as shown in Figure 2b. Furthermore, species present at the electrode surface that undergo redox 
processes within the electrolyte stability window will shorten further the potential range that is suitable for the 
determination of CDL. In the case of the electrochemical system investigated here, recording a wide CV allowed 
us to identify a potential window of about 600 mV as the maximum measurement window for CDL determination 
in both the presence and the absence of air, as shown in Figure 2b.  
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A widespread practice for selecting the upper and lower potential limits for the measurements consists of using 
a narrow potential window [16], typically of 100 mV [4], centered at the open circuit potential (OCP). However, 
following this approach uncritically may lead to large deviations. Firstly, while it is generally assumed that the 
OCP falls within the potential region where no redox processes take place due to the fact that no external current 
is flowing through the system at this potential, there are cases where long times are required to reach stable OCP 
values after cell assembly [28]. Recording a wide CV similar to the one shown in Figure 1b results helpful for 
assessing the suitability of the OCP as the center of the measurement window. A second deviation originates from 
the standardized use of the 100 mV measurement window because it is necessary that a steady charging current 
is reached within the investigated voltage window. This is described by the transient period, namely, the period 
in which double layer charging has not yet reached steady state when transitioning from an anodic to a cathodic 
sweep (or vice versa), whose duration depends on the properties of the system. If the transient period is short, a 
window of–or even narrower than–100 mV might be wide enough for allowing the system to reach a steady 
charging current. That is the case of the RC-circuit as shown in Figure 2c, where both steady currents, anodic and 
cathodic, clearly overlap within the different measurement windows shown. However, this is often not the case 
for electrochemical systems, as other factors related to intrinsic irreversibility of charging/discharging processes 
[24], and the presence and transport of ions at the interface [27, 29, 30], as well as electrode conductivity [22, 27, 
29] and cell resistance (discussed more in detail in Step 2) could impact substantially the initial stages of the 
double layer charging. Moreover, if the transient periods observed during the anodic CV scans are different to 
those of the cathodic CV scans and the measuring window is too narrow, the CDL values obtained from the 
corresponding data set could also deviate substantially from each other. Thus, it is often necessary to select 
measuring windows larger than 100 mV not only to ensure reaching a steady charging current, but also to ensure 
that iC values extracted from the anodic and cathodic scans are similar. Figure 2d illustrates this issue for the case 
of the EC-cell, showing that a 100 mV window is too narrow for this system as clear overlaps of both the anodic 
and cathodic currents are observed only for CVs recorded with 500 and 550 mV measuring windows. 
Furthermore, comparing the currents recorded within different measuring windows, larger differences were 
observed for the cathodic than for the anodic scans, suggesting that the transient periods of the former are 
considerably larger than for the latter. It is thus advisable to select the suitable measurement window by recording 
CVs at the same scan rate within potential ranges of increasing size, until a clear overlap of both the anodic and 
cathodic steady current is observed. For the systems studied here, namely the RC-circuit and the EC-cell, 
measurement windows of 100 and 500 mV, respectively, centered at 0 V and at OCP, respectively, were selected 
for the subsequent experiments, unless indicated differently.  
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Figure 2. Cyclic voltammograms recorded for (a,c) the RC-circuit and (b,d) the EC-cell, using scan rates of 
(a,b) 10 mV s-1 and (c,d) 500 mV s-1 within different measurement windows. Note that (a,b) and (c,d) are 

displayed with the same X-axis scale to facilitate the comparison.  

Note that the electrode surface of the EC-cell studied here was made of glassy carbon, whose inert nature allows 
for conducting these measurements in a large potential range without the interference of redox processes. 
However, this may not be the case for actual electrocatalytic materials. For example, Co, Ni or Fe-based 
compounds, which have been studied as catalysts for diverse reactions in aqueous media, display redox peaks 
within the measurement window shown in Figure 2b [31, 32]. The presence of redox peaks may not only make 
difficult to find a sufficiently large CV window for the determination of CDL, but in some cases it may even be 
impossible, specially in those involving more than one interfering redox peak [33]. It is important to keep in mind 
that the determination of CDL via scan-dependent cyclic voltammetry should not be regarded as a universal 
technique, and a careful evaluation of its suitability when applied to a given electrochemical system is necessary. 

Summary of Step 1: Record a CV at a slow scan rate to identify a redox process-free potential window and 
select a window within that ensures that a steady charging current is reached and that iC values extracted from the 
anodic and cathodic scans are similar. 

Step 2: iRU-drop compensation 

In three-electrode configuration cells, the electrode of interest (the working electrode) is investigated with 
respect to the reference electrode. A potentiostat controls the voltage between them by injecting current through 
the counter electrode. The response observed at the working electrode depends not only on the nature of the 
electrode/electrolyte interface and on the experiment to be conducted, but also on parameters related to the 
electrochemical setup, including cell geometry, electrode shape, solution conductance, wiring, among others. The 
potentiostat is able to compensate for the resistance encountered between the working and the counter electrodes 
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in order to achieve the desired voltage or current at the working electrode. However, it is not able to compensate 
the resistances encountered between the working electrode and the equipotential surface at the tip of the reference 
electrode, leading to an unavoidable difference between the desired potential and the actual potential applied at 
the surface of the working electrode [34]. The sum of such resistances is called uncompensated resistance (RU) 
and the difference in potential is commonly known as iRU-drop, as it depends on both RU and the current (i) 
flowing through the system, according to Ohm’s law [19]. Thereby, the iRU-drop must be considered for every 
attempt of quantitative analysis involving data collected with 3-electrode configuration cells.  

Compensation of the iRU-drop is of special importance for the specific case of the determination of CDL by 
voltammetric methods, as the uncompensated iRU-drop leads to non-linear potential sweeps, and consequently, to 
a misread of the voltammetric data [35]. For that reason, the second step of the procedure focuses on the 
compensation of this potential drop. Different experimental methods, such as EIS, positive feedback or current 
interrupt, allow for the determination of RU and their advantages (and disadvantages) have been extensively 
discussed [6, 36–38]. Once RU is determined, the measured potentials can be corrected– or compensated–
according to Equation 3. Data for the determination of CDL should be extracted from the corrected 
voltammograms. 

Eୡ୭୰୰ୣୡ୲ୣୢ ൌ E୫ୣୟୱ୳୰ୣୢ െ iR୙   (Eq. 3) 
Most modern potentiostats offer the possibility of conducting iR-drop compensation dynamically, that is, while 

the measurement is running. This option ensures that the desired potentials are applied independently of the current 
flow and further offers the advantage of simplifying the post analysis, as the step for correcting the measured 
potentials is no longer needed. It requires that RU is known prior to the measurement, since its value has to be 
input for the potentiostat to conduct dynamic compensation. However, RU cannot be fully compensated in this 
manner, as it can lead to potentiostat oscillation. While it is generally recommended to input 80-90% of RU for 
dynamic compensation, it is advisable to find an optimum input value, namely, as large as possible without causing 
oscillation. Figure 3 shows the upper edge of voltammograms of the RC-circuit and the EC-cell recorded within 
the same measurement windows using different resistance values as input for dynamic compensation. Note that 
the RC-circuit was investigated analogously to a two-electrode cell, where RU=0 and thus, iRU-drop compensation 
is not needed. In this case, the input resistance values were calculated with respect to the total resistance of the 
circuit (50 ) to illustrate the effect of overcompensation.  

The impact of compensation is stronger in the potential region where the current is rising than it is in the region 
where a steady current is reached, indicating that compensation of iRU-drop is of even higher relevance for 
interfaces with long transient periods, specially if narrow measurement windows were selected. On the other hand, 
oscillation due to overcompensation can clearly introduce large deviations and must be avoided. In fact, 
overcompensation led to a potential shift in a direction opposite to the shift observed from (under)compensated 
data, as indicated by the arrows in Figure 3. The upper edge of the CVs recorded for the EC-cell shifted to lower 
potentials as the resistance value input for compensation increased, however, as the data underwent 
overcompensation, the edge shifted back to larger potentials. This observation demonstrates the importance of 
optimizing the dynamic iRU-drop compensation prior to conducting quantitative analyses.  

Summary of Step 2: Determine the uncompensated resistance and use it to correct the measured potentials. If 
compensation is done dynamically, make sure that the input value of resistance is as large as possible without 
causing oscillation.  
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Figure 3. Upper edge of cyclic voltammograms of (a) RC-circuit and (b) EC-cell recorded at 0.5 V s-1 scan 

rate, using different resistance values as input for dynamic iRU-drop compensation. Arrows indicate the trend of 
the recorded voltammograms with respect to an increasing resistance value input for compensation.  

 

Step 3: Optimize measuring settings  

Most modern potentiostats integrate a series of optional settings that allow for the enhancement of their 
capabilities towards specific purposes. Though this can be quite convenient, it is important to keep in mind its 
main implication: different settings may lead to different measurement outcomes. It is therefore necessary to fully 
understand the potentiostat functionalities in order to select adequately the settings for the experiment. Manuals 
as well as diverse application notes have been made available by different potentiostat manufacturers for this 
purpose. Yet, it is advisable to make use of dummy cells for testing and understanding the different settings, as 
they allow a direct observation of the potentiostat responses to them, as well as an assessment of whether 
maintenance or calibration of the potentiostat is needed. Thus, the third step of the procedure involves the careful 
selection of potentiostat-dependent settings to ensure that the experimental data is collected adequately. 

To illustrate the importance of optimizing the measuring settings, CVs of the RC-circuit were recorded varying 
three selected settings available for cyclic voltammetry in Gamry potentiostats: the current range, the size of the 
voltage step of the digital staircase approximating an analog ramp, and the sampling mode, namely, the mode in 
which data is sampled throughout the voltage step of the digital staircase (Figure S1). Note that these settings are 
often available in potentiostats from other manufacturers, and that there may be other settings not considered here 
that could also have a substantial impact on the voltammetric responses. Figure 4a shows CVs obtained at a scan 
rate of 0.5 V s-1 with maximum currents set at either fixed current values of 10, 100, and 1000 A or in the 
automatic current range mode. The current expected for an ideal capacitor of 20 F at this scan rate is 10 A 
according to Equation 2. Noisier responses were observed for the cases where the difference between this value 
and the selected maximum current was larger. Moreover, in addition to higher noise, setting larger maximum 
currents led to offsets with respect to the expected current towards lower values (more positive in the case of 
cathodic scans) as shown in the inset of Figure 4a. While a maximum current set to 100 A led only to a small 
deviation, 1000 A (hundred times larger than the expected current) led to an offset in current of about 20%. 
Interestingly, the option for adjusting the current range automatically, though convenient, is not as precise as 
selecting 10 A as maximum current input. Furthermore, this option may introduce current spikes as the current 
range is (automatically) adjusted. Thus, it is recommended to input an optimal fixed current range rather than 
using automatic adjustment for quantitative analyses. In the case of the determination of CDL it is advisable to 
optimize the current range for each scan rate tested.  

Figure 4b shows CVs obtained at a scan rate of 0.5 V s-1 with potential steps of the digital staircase of different 
sizes. The potential step size defines how many potential points are to be collected, delivering higher resolution 
with smaller step sizes. Where data storage is not of concern, it is recommended to collect larger amount of data 
points for more accurate analysis. For the case of the determination of CDL by cyclic voltammetry, the step size 
becomes relevant in two cases. The first case is when the measurement window is narrow, since using large 
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potential step sizes narrows further the data collected. The second case is related to the third setting parameter, 
namely the sampling mode, which can be conducted in two limits: (i) by sampling the entire staircase step in its 
full duration, or (ii) by only sampling data at the end of it (Figure S1). The latter mode is useful for experiments 
where it is desired to minimize capacitive contributions as it allows for the capacitive current to decay before 
acquiring the data. Thereby, if used for investigation of CDL, it will lead to large underestimations of the capacitive 
current, specially in the case where a large potential step size was used. A comparison of these two modes is 
shown in Figure 4c and 4d, illustrating clearly that the two modes deliver substantially different responses (note 
that for these two figures the scale is identical).  

Summary of Step 3: Understand fully your potentiostat capabilities and identify optimal measuring settings.  

 

 
Figure 4. Cyclic voltammograms of RC-circuit comparing settings available in Gamry potentiostats for data 
collection including (a) maximum current (0.5 V s-1 scan rate, step size 0.2 mV, sampled over the full step), 
(b) step size (0.5 V s-1 scan rate, current limit 0.01 mA, sampled over the full step), and sampling modes (c) 
over the full step and (d) at the end of the step, at different scan rates (optimized current limit, step size 0.2 

mV). The inset of (a) shows the currents measured in a 4 mV window during the cathodic scan with different 
settings of maximum current. Y-axis scales of plots (c) and (d) are identical with dashed lines set at the same 

Y-axis position to facilitate comparisons between the two plots.  
 

Step 4: Run experiments using optimized parameters 

The first three steps of the procedure focus on selecting the parameters that are suitable for conducting a given 
measurement with a given electrochemical system, meaning that these parameters could be different for different 
electrode/electrolyte interfaces. It is only in Step 4 when the actually necessary data for the analysis is acquired. 
The experiment consists of recording CVs within the selected measurement window (Step 1) at different scan 
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rates, using the optimized settings (Steps 2 and 3) for data acquisition. It is recommended to use a scan rate range 
as wide as possible, avoiding on the one hand too slow scan rates that make the experiment unnecessarily time-
consuming, and on the other hand too large scan rates that may lead to large deviations originating from 
potentiostat limitations (e.g., insufficient sampling frequency). These limitations can be identified by means of a 
dummy cell or an electric circuit similar to the RC-circuit, since for either case the current measured during a CV 
can be predicted, thus facilitating the observation of deviations at high scan rates. In addition to this, it is advisable 
to record not one but several consecutive CVs until unchanging responses are observed. The iC data is later 
extracted solely from the last CV. 

The difference between using non-optimized and optimized settings for data acquisition is illustrated by Figure 
5a and 5b, respectively, showing the corresponding voltammetric responses of the RC-circuit at different scan 
rates. Let us take as an example a scan rate of 10 V s-1. The current expected, namely 0.2 mA according to Equation 
2, is indicated by a dotted line. Clearly, this current was reached only when the measurement was conducted using 
optimized settings (Figure 5b).  

 

 

Figure 5. Cyclic voltammograms of (a,b) RC-circuit and (c,d) EC-cell at different scan rates using (a,c) non-
optimized settings (100 mV measurement window, no iRU-drop compensation, automatic current limit, step size 
1 mV) and at (b,d) optimized settings (50% iRU-drop compensation for the EC-cell, current limit optimized for 
each scan rate, step size 0.1 mV). Figures at the left are displayed with the same scales as those at the right. Dot 

lines in Figures at the left are set in the same Y-axis position as in those at the right to facilitate comparisons 
between plots. 

 
While an underestimation of the capacitive current is easy to identify for the RC-circuit as its capacitance is 

known and its behavior predictable, it can be easily overlooked for electrochemical systems. Such is the case of 
the EC-cell, as shown in Figures 5c and 5d obtained with non-optimized and optimized settings, respectively. 
The dotted line in these two figures is situated at a current value of 87 A which corresponds to the current 
extracted at a potential of 0.2 V vs Hg|HgO from the CV recorded at 10 V s-1 using optimized settings (Figure 
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5d). Meanwhile, the current extracted at the same potential from a CV recorded at the same scan rate, for which 
optimization of measurement settings was not done (Figure 5c) was about 52 A, representing an underestimation 
of iC of about 40% with respect to the former case. It is evident that a substantial underestimation of capacitive 
current is the consequence of not using the optimal settings, which could lead to a substantial misestimation of 
the CDL. The impact of the underestimations observed for the RC-circuit and EC-cell on the CDL value obtained 
after data analysis will be discussed in detail later on (Step 6). 

Summary of Step 4: Record continuous CVs in an optimal potential window using optimized measuring 
settings and at different scan rates in a wide scan rate range.  

Step 5: Select data suitable for analysis 

The voltammetric data required for the analysis has been acquired during Step 4, however, that does not 
necessarily mean that all the collected data will be useful. Step 5 of the procedure focuses on identifying the data 
that is suitable for analysis. In the case of the determination of CDL, the data corresponding to capacitive current 
is extracted from the anodic and cathodic sweeps of the–last if several–CVs recorded at different scan rates. In 
the case of the RC-circuit and the EC-cell, the charging current data was extracted at the potentials at which the 
corresponding CVs were centered, namely, 0 and 0.201 V (OCP), respectively. During the fifth step of the 
procedure, the scan rate range is narrowed by taking into consideration (i) possible non-capacitive processes 
contributing to the measured current, (ii) possible ion transport limitations, and (iii) the similarity between data 
extracted from the anodic and the cathodic scans, all of which depend on the specific characteristics of the 
electrochemical system investigated. For the first consideration, it should be noted that competing faradaic 
processes contribute more significantly to the overall measured current at lower scan rates, whereas larger 
contributions of the capacitive currents are achieved at higher scan rates. This is illustrated in Figure 6a, where 
simulated current vs scan rate plots corresponding to an ideal RC-circuit (50  in series with 20 F) and to an 
ideal Randles circuit (50  in series with 20 F with a parallel resistance of 1 M) are shown. The data 
corresponding to the latter was simulated according to Equation 4 (see discussion in supporting information). 
The parallel resistor (RP) represents the effect of resistances encountered at the electrode/electrolyte interface. It 
contributes to the total resistance (RT), and together with the voltage applied (V), to the net current (inet) according 
to Ohm’s Law. Note that Equation 4 cannot be used as a valid model for electrochemical systems where RP is 
potential-dependent. Indeed, although the capacitance is the same for both systems, the measured currents differ 
from each other more substantially the lower the scan rate is, while the contribution of RP becomes negligible at 
larger scan rates. Thereby, in cases where contributions of faradaic processes are difficult to avoid, for instance 
due to the presence of redox species in the electrochemical system with redox potentials near to the measurement 
window, data measured at slow scan rates should be discarded.  

i୬ୣ୲ ൌ
୚

ୖ౐
൅ ν ∙ C   (Eq. 4) 

The second consideration is related to ion transport limitations and is described in detail in a report by Wang 
and Pilon [29]. In summary, using too large scan rates may result in an underestimation of capacitive currents in 
cases of systems where ion transport is limited either by low diffusion capabilities of the ions in the electrolyte 
(due to low diffusion coefficient and/or to solvation effects), or by the use of electrodes with mesoporous 
structures, or by both. Additionally, large electrolyte concentrations as well as poor electrode conductivity may 
also lead to lower currents. All these limitations may result in a decrease of the slope in the iC vs  plot, leading 
subsequently to an underestimation of CDL (Step 6). Thus, selecting an appropriate scan rate range, though often 
neglected, is not trivial and should be considered in accordance with the characteristics of the specific 
electrochemical system under investigation.  
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Figure 6. (a) Anodic current as function of scan rate simulated at a voltage of 0.1 V for an ideal RC circuit (50 
 in series with 20 F) and for an ideal Randles circuit (50  in series with 20 F with a parallel resistance of 1 
M). Absolute net currents extracted from anodic and cathodic voltammetric sweeps of (b) RC-circuit and (c) 
EC-cell at a voltage of 0 V and at an electrode potential of 0.2 V vs Hg|HgO, respectively, recorded at various 

scan rates. Note that the X and Y axis are shown in logarithmic scale. Dotted lines are included to guide the eye. 
 

The third consideration involves a comparison of the data collected from the anodic and the cathodic 
voltammetric scans. As discussed previously (Step 1), for an ideal capacitor the anodic and cathodic capacitive 
currents are equal, only differing in the sign which, by convention, is positive for anodic current and negative for 
cathodic current. Thus, provided that the potentiostat is properly calibrated, the absolute iC values are expected to 
overlap with each other in a current vs scan rate plot, as shown in Figure 6b for the RC-circuit. Note that the 
overlap occurs for all data points shown in Figure 6b, each of which corresponds to a different scan rate value. 
Nevertheless, this is not the case for the EC-cell as shown in Figure 6c, where a fair overlap of the cathodic and 
anodic currents was observed at scan rates above 0.5 V s-1, while at lower scan rates the value of the two (absolute) 
currents differ. Moreover, the resulting plot resembles that of the Randles circuit shown in Figure 6a, indicating 
that the system does not behave as an ideal capacitor (this will be discussed in detail in Step 7). Thus, it is 
convenient to select the data set corresponding to large scan rates to ensure that the majority of current 
contributions originates from capacitance. As the investigated electrode surface is that of a smooth glassy carbon 
disk immersed in NaOH solution of moderate concentration (0.1 M), ion transport is not expected to be limiting 
for the larger scan rates of the investigated range. For our examples in Figure 6, we selected the scan rates from 
0.01 to 10 V s-1 for the RC-circuit and from 0.5 to 10 V s-1 for the EC-cell. 

Summary of Step 5: Extract charging currents recorded during the last anodic and cathodic sweeps for each 
scan rate and plot their absolute values against the scan rate, both in logarithmic scales. Discard data points that 
deviate substantially from the linear current-scan rate relation.  

Step 6: Extract desired information 

After selecting a suitable data set, data processing takes place and the desired information is extracted, which 
is the focus of Step 6. In the case of the determination of CDL, the capacitance is extracted from the current vs scan 
rate plot by fitting the data to a model. The most common model used is that of the ideal capacitor, in which case 
a linear regression is used to obtain CDL from the slope according to Equation 5. If the intercept is set to zero for 
the fitting, the equation obtained from the linear fit is equal to that of the ideal capacitor (Equation 2), with the 
variables Y and X being the current and the scan rate, respectively, and the slope b being the capacitance. The 
validity of this model will be discussed in detail later on (Step 7).   

Y ൌ bX   (Eq. 5) 
Figure 7a shows the two current vs scan rate data sets collected for the RC-circuit extracted from the CVs 

shown in Figure 5a and 5b (corresponding to non-optimized and optimized measurement settings, respectively) 
with their corresponding linear fits. The average of the capacitances determined from the anodic and the cathodic 
scans were 19.8 and 18.8 F for the optimized and non-optimized data sets, respectively. Considering that the 
circuit integrated a capacitor of 20 F with ± 10% tolerance, both values fell within the expected capacitance 
window, with deviations of 1% and 6% with respect to the nominal capacitance of 20 F, respectively.  
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Figure 7. Current as a function of scan rate of (a) RC-circuit obtained with optimized and non-optimized 
measurement settings, and of (b) EC-cell, obtained with optimized and non-optimized measurement settings, 

and comparing measurement windows of 100 and 500 mV. Dot lines correspond to corresponding linear 
regression fits. The resulting capacitance values are shown with the colors corresponding to their respective data 

set.  

 
In the previous section (Step 5), it was stablished that the EC-cell does not exhibit the behavior of an ideal 

capacitor. Yet, the linear model was used here to fit the data corresponding to this system to be able to observe 
the outcome of the analysis and to compare it later on with a more suitable model (Step 7). Data sets of current vs 
scan rate collected with the EC-cell are shown in Figure 7b together with their corresponding linear fits. The 
difference between using optimized and non-optimized measurement settings was more dramatic for the EC-cell 
than it was in the case of the RC-circuit, obtaining CDL values of 9.5 and 5.8 F, respectively. At this point, the 
capacitance of the EC-cell is unknown, but assuming that it is indeed 9.5 F, the consequence of neglecting the 
Steps 1 to 5 of this procedure is an underestimation of 39%, which is remarkably high. In addition to this, Figure 
7b shows a data set collected with the EC-cell using all measurement settings optimized except for the 
measurement window. In the case of the fully optimized data set, a measurement window of 500 mV was used, 
while in this other case, a much narrower window of 100 mV was used. The average CDL obtained via linear fit 
was 6.0 F, corresponding to a deviation of 36.8%. This observation demonstrates that the first step of the 
procedure, that is, the careful selection of a suitable measuring window, has a much larger impact on the outcome 
of the analysis than the optimization of other measuring settings shown herein.  

Summary of Step 6: Select a model to fit the experimental data and extract the double layer capacitance. It is 
recommended to use the allometric fit as a starting model (see Step 7). 

Step 7: Evaluate validity of analysis 

The last step of the procedure, Step 7, focuses on the evaluation of the validity of the result obtained in Step 6. 
Note that Steps 6 and 7 are meant to be iterative (see Figure 1d) until the validity of the outcome is demonstrated. 
One approach to achieve this consists in cross-checking the result with a different technique, if possible. In the 
case of the determination of CDL a technique applicable for the two systems investigated here is EIS. Nyquist plots 
of the RC-circuit and of the EC-cell are shown in Figure 1c and Figure 8, respectively. The plots were fitted 
using models corresponding to an ideal RC circuit (Figure 1a) and to a constant phase element (CPE) circuit 
(Figure 8, inset), respectively. In the case of the RC-circuit, a capacitance of 19.8 F was obtained, which is in 
full agreement with the result obtained from the voltammetric method, strongly suggesting that the data analysis 
(Step 6) was adequately conducted. However, this is not the case for the EC-cell. The capacitance obtained from 
EIS was found to be 14.1F, as opposed to 9.5 F observed with the (most carefully conducted) voltammetric 
method, corresponding to a deviation of 32.6% with respect to the CDL value obtained by EIS. This discrepancy 
confirms that the ideal capacitor model is not suitable for describing the behavior of the EC-cell, as discussed in 
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previous sections (Step 5 and 6). Moreover, the need of considering a CPE to model the EIS data, which is 
typically found for non-ideal capacitive behavior, supports further this observation [39, 40].  

 

 

Figure 8. Nyquist plot of the EC-cell simulated and measured by electrochemical impedance spectroscopy in 
the frequency range from 100 kHz to 50 Hz at open circuit potential with an amplitude of 10 mV (RMS). The 

inset shows the equivalent circuit used for the simulation (RU=52.22 , RP=13.18 k, Yo=21.21x10-6, 
a=0.7564).  

 
It should be mention that using EIS for the determination of CDL comes with difficulties analogue to those of 

the voltammetric method. On the one hand, electrochemical systems often require the use of EIS models based 
on more complex equivalent systems [30, 41–43], which may challenge their interpretation and thus the extraction 
of the CDL [40, 44]. Moreover, the validity of the obtained CDL value also depends on understanding instrumental 
limitations, as well as on carefully selecting the measurement settings, model and its parameters [45]. In the case 
of the EC-cell, the CPE model describes fairly the measured data points within the frequency range from 100 kHz 
to 50 Hz, whereas lower frequency points deviate substantially from the selected model, indicating the presence 
of additional circuit elements (Figure S3). On the other hand, EIS is a technique considerably less accessible than 
cyclic voltammetry. In the cases where the outcome of the voltammetric method cannot be verified by an 
alternative method, validation of the analysis can be achieved by an evaluation of the goodness-of-fit parameters 
with the aim of assessing whether the observed data agree with the predictions of the used regression model. The 
coefficient of determination, also known as R squared (R2, 0 > R2 > 1), is a goodness-of-fit parameter of common 
use, where a larger R2 is understood as a better fit as it measures the extent to which the variation of the dependent 
variable (charging current) is explained by the independent variable (scan rate) [46]. The difficulty of its 
interpretation lies in defining a threshold, i.e., the minimum R2 value for which the validity of a fitting model will 
be unarguably demonstrated. Table 1 summarizes the CDL and R2 values corresponding to the linear regression 
fits shown in Figure 7 for the two investigated systems. Interestingly, all R2 values observed were relatively high, 
with the lowest R2 value of 0.9735 corresponding to data obtained for the EC-cell system using non-optimized 
measuring settings, and the highest R2 value of 0.99999 in the case of the RC-circuit, with the experimental data 
obtained in a fully optimized manner. Moreover, the data set corresponding to the RC-circuit acquired without 
optimization of the measurement settings delivered R2 values above 0.999, indicating that, while the fitting model 
seemed to be suitable for the analysis of the data, such high R2 value cannot be interpreted as a validation of the 
experimental procedure. In other words, selecting a suitable model leads to high R2 independently of whether the 
data was acquired correctly or not. Consequently, largely deviating CDL values can be obtained along with high 
R2 values. Moreover, it is important to consider that R2 does not discriminate reliable from abnormal data, nor 
delivers information about the distribution of the data points, as illustrated clearly by the Anscombe’s quartet [47]. 
This observation, on the one hand, enhances the importance of observing graphically the collected data as well as 
selecting carefully the datapoints suitable for analysis (Step 5), and on the other hand, renders R2 insufficient by 
itself for evaluation of the overall analysis.  
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A parameter that can be used for assessing the suitability of a linear model is known as the percentage of non-
linearity (%nL) [48], and its maximum value within a data set can be obtained according to Equation 6. In the 
case of the determination of CDL, Ymax is the maximum difference between the current measured and the current 
calculated from the equation resulting from the linear regression, while Ymax–Ymin represents the difference 
between the maximum and minimum current value measured.  

%nL୫ୟ୶ ൌ
|୼ଢ଼ౣ౗౮|

|ଢ଼ౣ౗౮ିଢ଼ౣ౟౤|
∙  100   (Eq. 6) 

It has been proposed that obtaining %nL lower than 2.5% can be considered a fair indicator that the linear 
model used is suitable for the fitted data set [48]. Considering this, %nLmax were determined for the different data 
sets evaluated herein (Table 1) and it was found that the condition %nLmax > 2.5% was only met by the sets 
corresponding to the RC-circuit, regardless of whether the measurement parameters were optimized or not. The 
convenience of the non-linearity parameter is that it allows the observation of deviations from the linear model 
which can be easily overlooked based on R2 values as well as on the appearance of the current vs scan rate plots 
when displayed with large X-axis scales. For instance, Figure 7b is displayed with a current scale of twice the 
maximum of the anodic current measured, giving the false appearance of a small deviation of the data points with 
respect to the linear fit. Thereby, it is strongly recommended to make use of this parameter to evaluate the 
goodness-of-fit where linear regressions are used as fitting model.  

From these results (further supported by EIS) it is clear that the linear model of an ideal capacitor is not suitable 
for describing the EC-cell. Coming back to Step 6, an alternative model was selected (Equation 7). The model 
corresponds to an allometric regression with the variables Y and X as the current and the scan rate, respectively, 
the slope b as the capacitance and an exponent that compensates deviations from linearity.  

Y ൌ bX஑   (Eq. 7) 
This model is analogous to a model used for redox systems in which the relation of ipeak vs  (peak current vs 

scan rate to the power of the exponent ) is investigated in relation to the electron transport process. The exponent 
takes values from 0.5 to 1, generally associated with diffusion-control and surfaced confined electron transport, 
respectively [49]. In the case of the determination of CDL, when the exponent  is equal to 1, the model becomes 
that of the ideal capacitor (Equation 5), and thus  may be interpreted as a measure of the deviation from the ideal 
linear behavior. Figures 9a and 9b show the current as a function of the scan rate extracted from the anodic scans 
of CVs collected with fully optimized measurement settings for the RC-circuit and the EC-cell, respectively. 
Additionally, a comparison between linear and allometric fits are shown in the same Figure. The resulting CDL 
and  values obtained for both the anodic and cathodic scans are summarized in Table 2.  

In the case of the RC-circuit, the resulting allometric and linear fits overlap with each other, as opposed to the 
EC-cell where not only the two resulting fits do not overlap, but also it is clear that the allometric model better fit 
the measured data. The average CDL was found to be 19.99 F with exponents  close to 1 (0.997 and 0.995 for 
the anodic and cathodic data sets, respectively) suggesting indeed an ideal-like capacitive behavior in agreement 
with previous observations. Moreover, the observed capacitance value represents a deviation of only 0.05% with 
respect to the nominal value of 20 F.  

The average CDL value obtained for the EC-cell by means of an allometric model was 14.97 F with  = 0.776 
for both the anodic and cathodic data sets, indicating a large deviation with respect to the ideal capacitor model. 
Interestingly, the value of the exponent was close to that of the exponent obtained for the CPE element in the 
EIS simulation shown in Figure 8, which had a value a = 0.7564. The obtained CDL was considerably larger than 
the value obtained by means of a linear fit model (9.49F), and even larger than CDL obtained without having 
optimized the measurement settings (5.79 F). Assuming that the CDL value of 14.97 F was determined correctly, 
the consequence of having used the ideal capacitor model is an underestimation of capacitance of 36.6% in the 
best case, and as large as 61.3% when measurement settings optimization was not carefully done.  
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Figure 9. Current as a function of scan rate of (a) RC-circuit and (b) EC-cell, obtained from anodic 
voltammetric scans at different scan rates showing their corresponding linear and allometric fits.  

 

Table 1. Double layer capacitance and linear fit parameters of RC-circuit and EC-cell comparing sets of data 
collected with optimized, non-optimized and partially optimized measurement settings.  

System Set 
CDL / F 
anodic 

R2  
anodic 

%nLmax 
anodic 

CDL / F 
cathodic 

R2  
cathodic 

%nLmax 
cathodic 

CDL / F  
average 

RC-
circuit 

1 19.87 0.99999 0.25 19.80 0.99999 0.41 19.84 

RC-
circuit 

2 18.90 0.9997 2.37 18.61 0.99949 1.93 18.76 

EC-cell 1 9.51 0.98979 9.10 9.46 0.9897 9.11 9.49 

EC-cell 3 6.04 0.98515 9.62 5.97 0.98555 9.34 6.01 

EC-cell 2 5.79 0.9735 12.85 5.56 0.98026 11.77 5.68 

1. Fully optimized data set, including scan rate range and measurement window 
2. Non-optimized data set 

3. Optimized data set, excluding measurement window (100 mV window used) 
 
To evaluate the validity of the new results (back to Step 7), one can resort to a comparison of R2 obtained with 

the linear (reported in Table 1) and allometric models (reported in Table 2) along with the comparisons shown in 
Figure 9. In the case of the RC-circuit, using an allometric or a linear fit did not show a difference in terms of R2, 
which was above 0.9999 in both cases. Contrariwise, R2 observed for the EC-cell with the allometric model were 
higher (above 0.999) than those observed with the linear model (below 0.990), indicating once more that the 
former was indeed a more suitable model than the latter for this particular electrochemical system. CDL values 
obtained by this model resulted in a deviation of 6.4% with respect to the value obtained by EIS (Figure 9, Table 
2) as opposed to the deviation of 32.6% observed with the linear fit model, further supporting the suitability of 
the allometric model.  

Summary of Step 7: Evaluate carefully the validity of the data analysis by cross-checking with a different 
method or by means of goodness-of-fit parameters. Be aware of the limitations of either options and critical with 
their interpretation. If necessary, look for a more suitable model.  
 

Finally, CDL values obtained with the RC-circuit and with the EC-cell using optimized and non-optimized 
measurement parameters fitted to either the linear or the allometric model are shown in Figure 10, illustrating 
clearly that neglecting the optimization of measurement settings, the adequate selection of a suitable model for 
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the investigated system, or both, leads to substantial deviations of the double layer capacitance. Thus, we stress 
the importance of following carefully and critically each of the considerations discussed in the seven-step 
procedure proposed herein.  

 
Table 2. Double layer capacitance (CDL) and corresponding allometric fit parameters of RC-circuit and EC-
cell with data sets collected with optimized measurement settings. CDL obtained by EIS is shown for 
comparison.  

System 
CDL / 

F 
anodic 


anodic 

R2  
anodic 

CDL / 

F 
cathodi

c 


cathodi

c 

R2  
cathodi

c 

CDL / 

F  
average 

EIS  

a 
CDL / 

F 

RC-
circuit 

19.98 0.9974 0.99999 20.01 0.9946 0.9999 19.99 - 19.75 

EC-cell 15.01 0.7760 0.9995 14.93 0.7760 0.99934 14.97 0.7564 14.07 

 

 

 
Figure 10. Double layer capacitance values obtained with the (a) RC-circuit and (b) the EC-cell. The dash 

line indicates the nominal capacitance of the RC-circuit. Values obtained from scan rate-dependent cyclic 
voltammetry using linear and allometric regressions are shown in orange and blue, respectively. Values obtained 

from electrochemical impedance spectroscopy are shown in purple. Text in the bars indicate whether the data 
acquisition was done using optimized or non-optimized measuring settings. In the case of the EC-cell the case 

where all measuring parameters were optimized except for the potential window is indicated as “narrow E 
window”. 

4. Final Remark: Each F counts! 

Throughout this work, it has been shown that different aspects related to data acquisition as well as data 
processing must be taken into consideration when conducting quantitative voltammetric analyses, and it has been 
demonstrated that, when neglected, they can easily lead to substantial deviations. In the case of the determination 
of CDL, these deviations frequently show themselves as an underestimation of its value, which thereby leads to an 
underestimation of the ECSA (Equation 1). If ECSA is then used to determine current density (j) according to 
Equation 8, the resulting value of j will be overestimated.  

j ൌ ୧

୉ୌ୅
    (Eq. 8) 

The consequence of overestimating the current density is that it overestimates catalytic activity. The question 
is then by how much? To try to answer this question, let us assume an underestimation of CDL = 1 F. 
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Considering the CS value of 40 F cm-2, which is often used (though rarely justified) in alkaline media [4], the 
resulting ECSA would be underestimated by 0.025 cm2, which is equivalent to–apparently–having an additional 
flat electrode of 1.8 mm diameter per F underestimated. It is worth noting that the validity of using material-
independent CS values for the calculation of ECSA is a topic that deserves deep revision and discussion, 
nonetheless as it is out of the scope of the present work, it will not be discussed further herein. Yet, we may use 
lower or higher CS values as way of example: with a CS of 20 and 80 F cm-2, the resulting ECSA is 
underestimated by 0.05 and 0.0125 cm2, respectively, equivalent to having additional flat electrodes of 2.5 and 
1.3 mm, respectively, per F underestimated.  

To illustrate what is the impact of underestimation of ECSA due to CDL, let us take the case of the oxygen 
evolution reaction. A common metric to describe and compare the catalytic activity of oxygen-evolving materials 
is the potential (EOER) at which certain current density (jOER), typically 10 mA cm-2, is attained (Figure 11a). 
Underestimations of ECSA of 0.0125, 0.025 and 0.05 cm2 lead to mistakenly reporting EOER at jOER values of 9.88, 
9.76 and 9.52 mA cm-2, respectively, instead of at 10 mA cm-2, thus mistakenly delivering an apparent higher 
activity (lower overpotential), and this occurs as a consequence of an underestimation of only 1 F. The variations 
of jOER with underestimations of CDL of 1, 2, 5 and 10 F are shown in Figure 11b calculated with CS values 
between 10 and 130 F cm-2, which are values reported typically in the literature [4]. The larger CDL, the larger 
the deviation of jOER with respect to the 10 mA cm-2 value at all CS values, impacting much more substantially 
materials with lower CS values.  

 
Figure 11. (a) Representation of activity metrics jOER and EOER extracted from a simulated polarization curve 

corresponding to the oxygen evolution reaction. (b) Variation of the metric jOER as a function of the specific 
capacitance (CS) observed with double layer capacitance underestimations (CDL) of 1, 2, 5 and 10 F. jOER was 

calculated assuming that CDL = 0 results in jOER = 10 mA cm-2. 
 
Clearly, CDL is crucial for an adequate assessment of the catalytic activity when it is done by means of current 

density-based activity metrics, and the accuracy with which it is determined must be carefully observed. The 
seven-step procedure proposed herein proves to be of great relevance in the determination of CDL since it 
effectively leads to a higher probability of performing accurate voltammetric measurements as well as valid 
analyses. Because of that, the procedure is not limited to the determination of CDL, but it can be readily applied to 
any other voltammetry-based analysis aiming to deliver quantitative results.   

5. Conclusion 

In the context of characterization of electrochemical properties of catalytic materials, we presented a procedure 
which seeks to increase the overall quality of voltammetric experiments, in particular for the determination of 
double layer capacitance (CDL) by scan rate-dependent cyclic voltammetry. The procedure is divided in seven 
steps, each of which focuses in a specific aspect related to data acquisition, data analysis or validation of the 
analysis. The first three steps are dedicated to the selection and optimization of various measurement settings, 
including the potential window, dynamic compensation of iRU-drop, current range, and data sampling mode within 
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the voltage steps of a voltammetric staircase. To observe the impact of these parameters on the determination of 
CDL, two systems were studied: a resistor-capacitor electric circuit and a glassy carbon disk in an electrochemical 
cell. It was demonstrated that the first step of the procedure, that is, the careful selection of a suitable potential 
window, has a much larger impact on the outcome of the analysis than the optimization of the other measuring 
settings investigated herein. In the case of the studied electrochemical system, the use of a 100 mV potential 
window, which is a range of potential used typically for these analyses, proved to be too narrow leading to an 
underestimation of CDL of about 36% with respect to the case where the potential window was optimized (500 
mV). The fourth and fifth steps of the procedure focus on the collection and selection of experimental data, 
respectively, considering a careful observation of the variation of charging current with respect to the scan rate 
within a wide scan rate range. The sixth and seventh steps of the procedure focus on the selection of a fitting 
model and the evaluation of its suitability for the determination of CDL, respectively. Two models were compared 
to fit the data acquired for both the electric circuit and the electrochemical system: a linear model based on the 
ideal capacitor behavior, which is of widespread use within the research community for this purpose, and an 
allometric fit, which we proposed herein as an alternative model. By evaluating the selected models using 
goodness-of-fit parameters, including R2, maximum non-linearity, and normalized R2, it was demonstrated that 
while the linear model was suitable to describe the behavior of the electric circuit, it delivered largely deviated 
CDL values for the electrochemical system, whereas the allometric model was suitable to fit the data of both 
systems, proving useful for both ideal and non-ideal systems. In addition to this, we showed that high R2 values 
were observed for all data sets, including those collected with non-optimized measuring parameters fitted to the 
linear model, indicating that R2 by itself does not suffice to validate the outcome of these analyses. We further 
supported these observations by comparison with CDL obtained by electrochemical impedance spectroscopy. 

In summary, it was shown that the probability of determining CDL in a successful manner is effectively 
increased by carefully following the seven-step procedure proposed herein, since it is built up as a series of 
strategic steps aiming to circumvent sources of error. Moreover, the seven-step procedure is not limited to the 
determination of CDL, but can be (and should be) applied to any other voltammetry-based analysis that aims to 
deliver quantitative results. We stress the importance of regarding the proposed methodology as a guideline that 
should be adapted to the characteristics of the particular electrochemical system studied and not conversely. It is 
important to consider carefully all the components of the electrochemical system as well as the potentiostat 
capabilities in order to select the suitable techniques, conditions, and measuring settings for its study. Finally, it 
is strongly recommended to make use of dummy cells (or electric circuits) to fully understand the potentiostat 
capabilities and its limitations, and use it accordingly for subsequent measurements.  
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1. Sampling mode for data acquisition 
 

  

Figure S1. Comparison between an analogue potential scan and a digital staircase. Inset illustrates data 
acquisition conducted by sampling the full potential step and by sampling at the end of the step. Figure adapted 

from [1] with permission from Gamry Instruments Inc. 
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2. Randles circuit model 
An electrict circuit was built to emulate a Randles cell. It consisted of a 100 F aluminum electrolytic capacitor 
(± 20% tolerance, rated voltage 35 V, Frolyt) parallel to a multiturn cermet trimming potentiometer with maximum 
resistance of 500 (± 10% tolerance, TT Electronics), both soldered in series with a 50  metal film resistor (± 
1% tolerance, Yageo). A photograph and a diagram of the circuit are shown in Figure S2a and S2b, respectively. 
The resistances, built in series and in parallel with respect the capacitor, are here denoted as RS and RP, 
respectively.  
 

 

Figure S2. (a) Photograph and (b) electrical diagram corresponding to the Randles circuit used in this work. 
(c) Current as function of scan rate extracted from cyclic voltammograms recorded with the built Randles 

circuit with a dynamic compensation of 45 , compared with simulated data corresponding to an ideal 
Randles circuit (500  resistor parallel to 100 F capacitor, both in series with a 50 resistor) and an ideal 

resistor-capacitor circuit (50 resistor in series with 100 F capacitor). 

 
Using the seven-step procedure described in the main manuscript, cyclic voltammograms were recorded in the 
range from 0 to 0.1 V at different scan rates with RP set to 500 . The data corresponding to current measured 
during anodic scans was extracted from the recorded voltammograms at a voltage of 0.05 V and it is shown as a 
function of the scan rate in Figure S2c (orange). The resulting curve is compared to data current vs scan rate (i vs 
) simulated from two different models: an ideal capacitor (Equation 1), and an ideal Randles circuit (Equation 
2) considering the voltage applied (V) and the total resistance (RT) of the circuit. RT was calculated according to 
Equation 3, considering RP and RS, as well the resistance compensated dynamically (RC). The comparison of the 
three data sets shows on the one hand, that the model indicated by Equation 2 describes appropriately the data 
measured, and on the other hand, that only a high scan rates, where the capacitive contribution to the net current 
is considerably large, the behaviour of the Randles circuit resembles that of the ideal capacitor.  
 

i ൌ ν ∙ C ൌ ν ∙ ሺ100 μFሻ       (Eq. 1) 
 

i ൌ ୚

ୖ౐
൅ ν ∙ C ൌ

ሺ଴.଴ହ ୚ሻ

ሺହ଴଴ ஐሻ
൅ ν ∙ ሺ100 μFሻ     (Eq. 2) 

 
R୘ ൌ R୔ ൅ Rୗ െ Rେ ൌ ሺ500 Ωሻ ൅ ሺ50 Ωሻ െ ሺ45 Ωሻ ൌ 105 Ω  (Eq. 3)   
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3. Electrochemical impedance spectroscopy 
 

 

Figure S3. (a) Bode plot and (b) Nyquist plot of the EC-cell () simulated and () measured by 
electrochemical impedance spectroscopy in the frequency range from 100 kHz to 0.1 Hz at open circuit 
potential with an amplitude of 10 mV (RMS). Simulation parameters are: RU=52.22 , RP=13.18 k, 

Yo=21.21x10-6, a=0.7564. 
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