
PHYSICAL REVIEW B 104, 064402 (2021)
Editors’ Suggestion

Signatures for Berezinskii-Kosterlitz-Thouless critical behavior in the planar
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We investigate the critical properties of the spin-1 honeycomb antiferromagnet BaNi2V2O8, both below
and above the ordering temperature TN using neutron diffraction and muon spin rotation measurements. Our
results characterize BaNi2V2O8 as a two-dimensional (2D) antiferromagnet across the entire temperature range,
displaying a series of crossovers from 2D XY to 2D XXZ and then to 2D Heisenberg behavior with increasing
temperature. In particular, the extracted critical exponent of the order parameter reveals a narrow temperature
regime close to TN, in which the system behaves as a 2D XY antiferromagnet. Above TN, evidence for
Berezinskii-Kosterlitz-Thouless behavior driven by vortex excitations is obtained from the scaling of the cor-
relation length. Our experimental results are in agreement with classical and quantum Monte Carlo simulations
performed using microscopic magnetic model Hamiltonians for BaNi2V2O8.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition is a
paradigmatic example of a phase transition driven by topolog-
ical defects. Due to its paramount importance in condensed
matter physics, the underlying fundamental concepts of topol-
ogy were recently distinguished by the Nobel prize in physics
[1,2]. In low-dimensional magnets, continuous spin rotation
symmetry cannot be spontaneously broken at finite tem-
peratures which, for example, rules out a finite-temperature
transition to a conventional long-range ordered (LRO) state
in a two-dimensional (2D) Heisenberg magnet. While this
famous result, known as the Mermin-Wagner theorem [3],
crucially determines the role of low-energy fluctuations, it
does not, however, apply to all types of phase transitions in
low dimensions. As predicted by Kosterlitz and Thouless and
independently by Berezinskii, in a 2D magnet with planar
spins (such as in the classical XY model) a quasi-long-range
ordered state with power-law correlations exists below a finite
transition temperature TBKT [1,4,5]. This thermal transition
is driven by the proliferation and unbinding of topological
defects in the form of vortices. Below TBKT, these vortices
are bound in vortex/antivortex pairs with opposite winding
numbers. Above TBKT, these pairs deconfine into a plasma of
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mobile vortices, which manifests itself through an exponential
decay of the correlation length ξ (T ) with temperature [2].

BKT phenomena were experimentally observed in ideal
physical realizations of the 2D XY model such as superfluids
[6], superconducting thin films [7], 2D organic magnetic com-
plexes [8,9], and more recently in a triangular lattice quantum
Ising system [10]. Signatures for BKT behavior were also
reported in promising solid-state prototypes of the 2D XY
model among layered magnets such as K2CuF4, Rb2CrCl4,
BaNi2X2O8 (X = As, P), and MnPS3 [11–16]. Although these
quasi-2D magnets have very weak interplane couplings, they
nevertheless develop conventional long-range magnetic order
below a finite transition temperature TN. The heat capacity of
K2CuF4, BaNi2X2O8 (X = As, P) and MnPS3 reveals sharp
lambda anomalies associated with a transition to 3D magnetic
LRO [17–19]. Although above TN, the critical scaling of these
quasi-2D magnets follows BKT theory, just below TN they
all exhibit 3D critical scaling which crosses over to 2D XY
with decreasing temperature [12,13,20–22]. To our knowl-
edge there are no reports of solid-state compounds where BKT
phenomena were observed which also display 2D behavior at
all temperatures.

Even though interplane interactions are detrimental to BKT
phenomena, Hakami et al. [23] provided theoretical evidence
that effective 2D XY behavior prevails over finite regions if
these couplings are sufficiently small, the size of these regions
being related to the ratio of the intraplane to interplane cou-
plings. Bramwell et al. [24] studied a finite 2D XY magnet and
showed that a transition to spontaneous finite magnetization
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occurs in the absence of interplane coupling, characterized
by an effective 2D XY exponent of β = 0.23. This transition
occurs above the bulk TBKT. Other aspects of the infinite
2D XY system, such as the presence of vortices and the
characteristic scaling of the correlation length, are not effected
by finite-size effects. Thus, a real magnetic compound may
be used to explore BKT physics if the interplane coupling
is sufficiently weak to allow 2D behavior over large length
scales, e.g., comparable to the magnetic domain size.

Apart from interplane couplings, the realization of in-
tralayer interactions of purely XY type could pose another
obstacle for the observation of BKT behavior in real solid-
state materials. However, recent quantum Monte Carlo
simulations reveal that BKT behavior is still present in 2D
Heisenberg magnets perturbed by an easy-plane anisotropy,
even if this anisotropy is very weak [25]. Hence, approximate
2D XY magnets, affected by a combination of small interplane
couplings, finite-size magnetic domains, and weak easy-plane
anisotropies can still display BKT phenomena even if they
eventually develop magnetic LRO at low temperatures.

Here, we report a comprehensive investigation of the spin-1
honeycomb compound BaNi2V2O8, which was recently dis-
covered to be a rare physical realization of the 2D Heisenberg
antiferromagnet (AFM) with weak XY anisotropy and neg-
ligible interlayer coupling [26,27]. Using a combination of
experimental and theoretical techniques we (i) establish a
consistent phase diagram of BaNi2V2O8, (ii) identify the tem-
perature range over which it behaves as a 2D XY magnet,
and (iii) provide signatures of BKT scaling behavior driven by
vortices in BaNi2V2O8 within the 2D XY regime above TN.

BaNi2V2O8 has a trigonal crystal structure (space group
R3̄), where the S = 1 Ni2+ magnetic ions form honeycomb
layers that are stacked perpendicular to the c axis. The sys-
tem develops conventional Néel long-range magnetic order
first reported below TN = 50 K based on powder neutron
diffraction [26]. Here, we identify TN = 47.75 ± 0.25 K from
single-crystal neutron diffraction (Appendix B) and muon
spin rotation measurements (Appendix C). In the ordered state
the spins are antiferromagneticaly aligned along one out of
three equivalent crystallographic axes within the honeycomb
plane [26].

The following Hamiltonian of BaNi2V2O8 was extracted
by comparing neutron scattering spectra to a spin-wave theory
analysis [27]:

H = Jn

∑
〈i, j〉

Si · S j + Jnn

∑
〈〈i, j〉〉

Si · S j

+ Jnnn

∑
〈〈〈i, j〉〉〉

Si · S j + Jout

∑
〈i, j〉′

Si · S j

+ DEP(XY)

∑
i

(
Sc

i

)2 + DEA

∑
i

(
Sx

i

)2
. (1)

The Hamiltonian of BaNi2V2O8 [Eq. (1)] has a strong
AFM first-neighbor (Jn = 12.3 meV), weaker AFM second-
neighbor (Jnn = 1.25 meV), and very weak third-neighbor
(Jnnn = 0.2 meV) intralayer Heisenberg couplings where all
couplings were counted once [27]. The interlayer coupling
if present is extremely weak with an upper limit on its
magnitude of |Jout| < 10−4Jn suggesting essentially 2D mag-

netic behavior in BaNi2V2O8. [27]. A weak single-ion XY
anisotropy (DEP(XY) = 0.0695 meV) favors spin directions
within the honeycomb plane, while an even weaker easy-axis
anisotropy (DEA = −0.0009 meV) prefers the alignment of
the magnetic moments along only a discrete subset of in-
planar directions [27]. Based on the threefold symmetry at
the Ni2+ sites, combined with time-reversal symmetry, one
might anticipate an effective sixfold in-plane anisotropy to be
relevant for BaNi2V2O8. It should be noted that, as shown by
José et al. [28], the presence of a sixfold in-plane easy-axis
anisotropy does not inhibit the BKT transition.

Further indications for the 2D Heisenberg behavior are
provided by the heat capacity of BaNi2V2O8, which does not
display sharp features at TN [26,29]. Moreover, recent single-
crystal static magnetic susceptibility measurements reveal
planar anisotropic magnetic behavior above TN, suggesting
that BaNi2V2O8 is a promising candidate to realize the 2D
Heisenberg model with XY anisotropy at finite temperatures
and, therefore, could host BKT physics [27]. Thus far, the
relevance of the BKT scenario was experimentally explored
using electron spin resonance and nuclear magnetic resonance
measurements, reporting values of TBKT = 43.3 K [30] and
40.2 ± 0.5 K [31], respectively. On the other hand, the mag-
netic properties of BaNi2V2O8 at finite temperatures, such
as the order parameter and correlation length scaling, have
not been studied so far. Here, we report on a comprehensive
experimental investigation using neutron scattering and sus-
ceptibility measurements, which demonstrate that BaNi2V2O8

is a rare example of a 2D AFM at all temperatures. We also
performed classical (CMC) and quantum Monte Carlo (QMC)
simulations, which are in accord with the experimental obser-
vations and provide further support for the BKT scenario.

II. METHODS

Single crystals of BaNi2V2O8 were grown in the Core Lab
for Quantum Materials (QMCL) at the Helmholtz-Zentrum
Berlin für Materialien und Energie. Zero-field (ZF) muon spin
rotation (μ+SR) measurements were performed on a single-
crystal sample using the EMU μ+SR spectrometer at the ISIS
Neutron and Muon Source, UK. The sample was oriented
so that the muon beam was perpendicular to the honeycomb
plane and the muon spectra were measured over the tempera-
ture range 8–48.5 K (Appendix D). Weak transverse field (TF)
μ+SR measurements were also performed over 45–100 K
(Appendix C). Elastic neutron scattering measurements were
performed over the temperature range 1.47–56 K on the cold
neutron triple-axis spectrometer TASP at the Paul Scherrer In-
stitute (PSI), Switzerland [32] (Appendix A). The correlation
length was also explored in the range of 48–140 K using TASP
in two-axis mode (Appendix A). The static magnetic suscep-
tibility was measured at the QMCL, over the range 2–640 K
as discussed in Ref. [27]. For comparison, CMC (Appendix J)
and QMC (Appendix K) simulations were performed, based
on model Hamiltonians of BaNi2V2O8.

III. RESULTS

We first report the results of the neutron scattering and
muon spin rotation measurements, separately below and
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FIG. 1. Integrated intensity I(1,0, 1
2 ) of the (1, 0, 1

2 ) magnetic Bragg peak measured by neutron scattering plotted (a) as a function of
temperature and (b) as a function of the reduced temperature in a logarithmic scale. (c) The logarithm of the frequencies f1 and f2 extracted
from the ZF-μ+SR spectra and plotted as functions of the reduced temperature in a logarithmic scale.

above the magnetic transition temperature TN. This is followed
by a detailed comparison to the theoretical results from CMC
and QMC simulations.

A. Magnetic scaling below TN

We first examine the magnetic properties of BaNi2V2O8

below TN using inelastic neutron scattering (Appendix A).
Figure 1(a) shows the integrated intensity I(1,0, 1

2 ) of the

(1, 0, 1
2 ) magnetic Bragg peak, as a function of temperature

T . The intensity smoothly decreases with increasing tem-
perature, and starts to drop steeply near 47 K. Above TN,
some residual intensity remains that decreases gradually to
zero, reminiscent of the behavior predicted for finite-size 2D
XY magnets (see Fig. 1 in Ref. [24]). Note that this signal
is not critical scattering because these measurements were
performed with an analyzer. Figure 1(b) shows I(1,0, 1

2 ) on a
logarithmic scale as a function of the reduced temperature,
t = (T − TN)/TN where TN set to 47.75 K (Appendixes B
and C). For single power-law behavior I(1,0, 1

2 ) ∝ |t |2β with
the critical exponent β, the logarithm would follow a linear
dependence, ln I(1,0, 1

2 ) ∝ 2β ln |t |, whose slope is set by the
value of β. However, we observe that ln I(1,0, 1

2 ) does not
follow a single straight line but reveals a crossover around
46–46.3 K, which separates two temperature regions, (I)
30–46 K, and (II) 46.3–47.5 K. Within both regimes, ln I(1,0, 1

2 )

can be fitted independently to a linear ln |t | dependence,
with effective critical exponents, βI = 0.172 ± 0.001 and
βII = 0.21 ± 0.013, respectively.

Remarkably, just below TN, the critical exponent βII is
close to the value βXY = 0.23 predicted for a large but finite
2D XY system [24]. In a real material such as BaNi2V2O8

such finite-sized effects could arise from the formation of
domains.

In contrast, the critical exponent βI which characterizes
the temperature region below TEA = 46 K, resides between
the value for the 2D XY (β = 0.23) and the 2D Ising model
(β = 0.125).

We attribute this intermediate value of the critical exponent
to the presence of the weak in-plane easy-axis anisotropy in
BaNi2V2O8 [27]. A recent theoretical study of the 2D XY
magnet with a fourfold in-plane anisotropy, indeed finds that
the critical exponent varies continuously from the 2D XY to

the 2D Ising value depending on the strength of this anisotropy
[33]. We anticipate that these results can be extended for
the case of sixfold in-plane anisotropy. Finally, it is worth
mentioning that the critical exponent β = 1/9 for the 2D
three-state Potts model is even further away from the observed
value.

The critical properties of BaNi2V2O8 were further inves-
tigated by analyzing ZF-μ+SR spectra of BaNi2V2O8 over
the temperature range 38–46 K (the spectra above 46 K were
found to be unreliable). Two distinct frequencies were iden-
tified in the muon spectrum, which can be attributed to the
presence of two muon stopping sites, i.e., the muons experi-
ence two distinct internal magnetic fields, which both directly
scale with the long-range magnetic order (Appendix D).

Figure 1(c) shows the temperature dependence of both
frequencies f1 and f2 on a logarithmic scale as functions of
ln |t |. The best power-law fits were achieved for the slopes
β( f1) = 0.208 ± 0.002 and β( f2) = 0.214 ± 0.002, respec-
tively. These muon results suggest that the 2D XY regime in
BaNi2V2O8 persists down to 38 K, in contrast to the neutron
data, which suggest a tendency toward Ising-like behavior
below TEA = 46 K. This difference can be attributed to the dif-
ferent timescales probed by muon and neutron spectroscopy.
The timescale probed by neutrons is faster than the muons
and therefore slow fluctuations appear effectively static for
the neutrons, while the muons, which are more sensitive,
correctly identify them as dynamic. Indeed, a comparison of
the neutron and muon data reveals that the muons observe a
lower magnetization than the neutrons (Appendix E), further
supporting this point.

We can imagine a scenario in which just below TN the spins
order antiferromagnetically along a general direction in the
XY plane with fluctuations about this direction, while below
TEA = 46 K the fluctuations occur predominantly toward the
easy-axis directions, giving rise to the reduction of the critical
exponent observed in the neutron data. This quenching, how-
ever, does not affect the critical exponents extracted from the
ZF-μ+SR spectra, as the muons assign these fluctuations to
spin dynamics.

A somewhat similar scenario was predicted by José et al.
[28] who showed that for an infinite classical 2D XY magnet
with additional sixfold in-plane anisotropy, a second phase
transition was found below the BKT transition where the
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system orders into one of these six preferred directions. In
BaNi2V2O8, we observe a crossover to anisotropic fluctua-
tions instead of a transition.

The value of the scaling exponent of approximately 0.21
near TN, extracted from both the neutron and muon data,
falls slightly below the value of 0.23 quoted for a 2D XY
finite-sized system. It should be mentioned, however, that
this effective exponent is actually expected to vary within the
range 0.21–0.23, depending on the size of the finite system,
and a value of 0.23 would be expected only for larger domains
[24]. As will be demonstrated below, a 2D XY scaling regime
also emerges for temperatures just above TN, further suggest-
ing the relevance of BKT physics for BaNi2V2O8.

B. Magnetic scaling above TN

To quantify the magnetic properties of BaNi2V2O8 above
TN, the temperature dependence of the spin-spin correlations
was investigated. The correlation length ξ (T ) was extracted
as the inverse full width at half maximum (FWHM) of the
energy-integrated magnetic signal at wave vector (1, 0, 1

2 ),
measured over the temperature range 48–140 K. In the fol-
lowing, we compare ξ (T ) to various theoretical scaling forms.
However, such theoretical expressions for ξ (T ) are typically
based on continuum descriptions and, as such, apply when
ξ (T ) extends well beyond the microscopic lattice scale, which
for BaNi2V2O8 is set by the shortest distance dNi = 2.90 Å be-
tween neighboring Ni2+ ions within the ab plane. Therefore,
in the following, we consider ξ (T ) only over the temperature
range 48–68 K, where the condition ξ > dNi is satisfied (the
gray solid circles in Fig. 2). The correlation length over the
entire temperature range from 48 to 140 K is provided in
Appendix F.

Near criticality, the correlation length typically follows a
power-law scaling ξ ∝ tν as a function of the reduced temper-
ature t = (T − TN)/TN. Here, the correlation length exponent
ν characterizes the universality class of the thermal phase
transition. In particular, ν takes on the values ν = 1, 0.64,
0.66, and 0.7 for the 2D Ising, 3D Ising, 3D XY, and 3D
Heisenberg universality classes, respectively [34]. We first ob-
served that such a single power-law scaling is inappropriate to
describe the temperature dependence of the correlation length
in BaNi2V2O8 within the considered temperature range of
48–68 K. As shown in Fig. 2, the fits to 3D Ising, 3D XY,
and 3D Heisenberg scaling deviate significantly from the data
below 54 K. In contrast, the 2D Ising scaling clearly overes-
timates the data at the lower temperatures, although it does
yield better agreement than the other power laws. A similar
analysis of the correlation length on a logarithmic scale as a
function of ln t confirms that ξ (T ) is not fitted well by any
single power law (Appendix G).

As a next step, ξ (T ) was fitted to the expression for the 2D
Heisenberg magnet inside the classical regime [35]:

ξ (T ) ∼ exp

(
2πρs

kBT

)(
1 − kBT

4πρs
+ O(T )2

)
. (2)

Here, ρs is a nonuniversal number, quantifying an effective
spin stiffness. The dashed blue line through the data in Fig. 2
shows the best fit of ξ (T ) to the above expression, achieved
for ρs = 7.01 ± 0.23 meV over the range 48–68 K. These

0

50

100

150

200

250

300

(a)

48 49 50 51 52 53 54
0

50

100

150

200

250

300  (T)
2D Ising,  =1
3D Ising, =0.64
3D XY, =0.66
3D Heisenberg, =0.7
BKT theory

48 50 52 54 56 58 60 62 64 66 68
0

50

100

150

200 (b)
 (T)

BKT theory
2D Heisenberg

FIG. 2. Correlation length ξ (T ) as a function of temperature T .
(a) compares the fit of the BKT expression (goodness of fit,
χ 2 = 7.5) to fits of conventional power-law scaling with an ex-
ponent fixed to ν = 1 (2D Ising, χ 2 = 13.2), ν = 0.64 (3D Ising,
χ 2 = 62.7), ν = 0.66 (3D XY, χ 2 = 58.7), and ν = 0.7 (3D
Heisenberg, χ 2 = 50.2) where TN set to 47.75 K (Appendixes
B and C). The inset shows the low-temperature region in de-
tail. (b) ξ(T ) compares the fits to the 2D Heisenberg model
(χ 2 = 9.7) and the BKT expression (χ 2 = 7.5).

results imply that the 2D Heisenberg model gives a good de-
scription of ξ (T ) for temperature above 51–52 K, even though
it does not take into account the anisotropies and the interlayer
coupling. However, this isotropic model does not reproduce
the experimental data in the temperature regime closer to TN,
an observation that can be attributed to the planar anisotropy.

Since neither a conventional power law nor the 2D Heisen-
berg model scaling describe the spin-spin correlations of
BaNi2V2O8 accurately over the temperature range just above
the TN, we also analyzed ξ (T ) in terms of the BKT exponen-
tial scaling law for the 2D XY model, which reads

ξ (T ) ∼ exp

(
b

√
TBKT

T − TBKT

)
. (3)

Here, b is a nonuniversal number and TBKT is the BKT transi-
tion temperature. The dashed-dotted red line in Fig. 2 presents
the best fit of Eq. (3) to the experimental data for BaNi2V2O8,
achieved with TBKT = 44.95 ± 0.11 K, and b set to 1.5 [2],
respectively. We indeed find that the BKT scaling of ξ (T )
accurately follows the thermal decay of ξ over the entire ex-

064402-4



SIGNATURES FOR BEREZINSKII-KOSTERLITZ-THOULESS … PHYSICAL REVIEW B 104, 064402 (2021)

FIG. 3. The magnetic susceptibility of BaNi2V2O8 measured in
a magnetic field of 1 T applied parallel (solid black line) and per-
pendicular (solid green line) to the c axis [27]. The dashed-dotted
blue and cyan lines (dashed red and magenta lines) on (a) [(b)]
show the results of CMC (QMC) computations, respectively. The
inset shows the average angle αab between the magnetic moments
and the honeycomb plane as computed using CMC. The details of
the CMC and QMC computations are given in Appendixes J and K,
respectively.

plored temperature range, 48–68 K. A comparison of the BKT
model expression to the other scenarios thus reveals that it de-
scribes the magnetic fluctuations of BaNi2V2O8 significantly
better than the 2D Heisenberg model or a conventional power
law. The superiority of the BKT model over the power laws
is further confirmed by the analysis of ξ (T ) on a logarithmic
scale given in Appendix H.

Finally, ξ (T ) was fitted to the BKT expression over several
temperature ranges extending from 48 K up to Tmax, using
different values of Tmax = 55, 60, and 66 K, in order to as-
sess the robustness of the extracted value of TBKT. These fits
are provided in Appendix I and reveal that TBKT lies within
the range 44.44 K < TBKT < 44.95 K, where TBKT = 44.44 K
and TBKT = 44.95 K are extracted for the temperature ranges
48–55 K and 48–68 K, respectively. We take the mean value
of TBKT = 44.70 ± 0.25 K as our best estimate for the BKT
transition temperature. Since TBKT is lower than TN, the qua-
siordered state is in fact hidden by the onset of LRO at TN.
Nevertheless, deconfined vortex/antivortex excitations are ex-
pected to occur in the regime just above TN, which we indeed
quantify below using a microscopic model description for the
magnetism in BaNi2V2O8.

C. Comparison with microscopic models

To further benchmark the BKT physics in BaNi2V2O8 with
respect to microscopic details, classical (CMC) and quan-
tum (QMC) simulations were performed, based on model
Hamiltonians for BaNi2V2O8 in order to (i) compare with the
magnetic susceptibility recently measured on a single crystal
[27] and (ii) verify the values of TBKT extracted from the
analysis of ξ (T ).

(a) T=23 K

(c) T=92 K(b) T=46 K

FIG. 4. (a)–(c) Example configurations from CMC simulations
of the honeycomb lattice where every second spin is artificially
flipped for simplicity at (a) T = 23 K, (b) T = 46 K, and (c)
T = 92 K. The spin directions are indicated by colors, and the inten-
sity of the color quantifies the size of the out-of-plane component.
Solid (open) black circles indicate vortices (antivortices) and the red
rings highlight vortex-antivortex pairs.

Figures 3(a) and 3(b) show comparisons of the CMC and
QMC results to the experimental data, respectively. The solid
black and green lines present the magnetic susceptibility for
a constant magnetic field of B = 1 T, applied parallel (χ||c) or
perpendicular (χ⊥c) to the c axis, respectively, where the c axis
is perpendicular to the easy plane [27]. At high temperature,
the susceptibility of BaNi2V2O8 behaves isotropically and the
broad maximum at 150 K is attributed to low-dimensional
spin-spin correlations. Upon decreasing T below Tani ≈ 80 K,
the susceptibilities χ||c and χ⊥c split, revealing that the planar
anisotropy is already evident well above TN. The out-of-plane
susceptibility χ||c has a minimum at TXY = 52 K, which is
attributed to the crossover to a regime dominated by the
XY anisotropy, below which the spins lie mostly within the
honeycomb easy plane, according to recent QMC simula-
tions performed for the S = 1

2 square lattice [25]. Indeed,
this is consistent with the previous section where we also
found that below about 51 K, the isotropic 2D Heisenberg
model scaling fails to follow the correlation length ξ (T )
in BaNi2V2O8.

The dashed-dotted blue and cyan lines in Fig. 3(a) present
the CMC results for χ||c and χ⊥c, respectively, using the
Hamiltonian for BaNi2V2O8 [Eq. (1)], but without the in-
terlayer coupling (Appendix J). Both χCMC

⊥c and χCMC
||c are

in good agreement with the experimental data at high tem-
peratures. In particular, the position of the broad maximum
matches the experimental value very well. Below this max-
imum, χCMC

||c and χCMC
⊥c decrease smoothly, revealing an

anisotropic splitting around Tani ≈ 80 K, as found also in
the experimental data. This characteristic temperature can
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be quantified from the computed average angle between the
spins and the easy plane. At high temperature this angle αab

resides at 32.7◦, corresponding to the average out-of-plane
component for a randomly oriented three-component spin [cf.
the inset of Fig. 3(a)]. Below T CMC

ani ≈ 80 K, αab starts to
decrease steeply, clearly indicating the onset of the easy-plane
behavior. At lower temperatures, only qualitative agreement is
observed between the experimental data and the CMC calcu-
lations. Indeed, χCMC

||c displays the characteristic minimum at
T CMC

XY ≈ 70 K which is somewhat higher than the experimen-
tal value of TXY = 52 K. This difference is attributed to the
neglect of quantum fluctuations in the CMC simulations.

Before quantifying further the effects of quantum fluctu-
ation in terms of QMC simulations, we demonstrate that the
CMC computations support the presence of spin-vortex states
in BaNi2V2O8 at finite temperatures. Figures 4(a)–4(c) show
example CMC real-space configurations for T = 23, 46, and
92 K, respectively. The CMC simulations reveal a conven-
tionally ordered AFM ground state at T = 0 K. According
to the BKT theory, the density of spin-vortex excitations is
low at small temperatures and, indeed, we observe no vortices
within the computed domain at T = 23 K. Upon increas-
ing temperature, a finite density of bound vortex-antivortex
pairs is observed at T = 46 K. For T = 92 K, the density
of vortex excitations is significantly larger and they now
form a deconfined plasma, i.e., their binding into vortex-
antivortex pairs is no longer discernible. These observations
clearly reveal that BKT physics is relevant for the magnetism
of BaNi2V2O8.

We estimate the BKT transition temperature within the
CMC simulations based on the real-space spin-spin corre-
lation function C(r). BKT theory predicts that below TBKT,
C(r) decays as a function of spin separation r according to a
power law C(r) ∝ r−η(T ), where η = 1/4 at TBKT. Based on
this criterion, we get T CMC

BKT = 55 K. This temperature is again
higher than TBKT = 44.70 ± 0.25 K estimated from fitting the
experimental ξ (T ) above TN . This difference can also be at-
tributed to the fact that CMC does not account for quantum
fluctuations, which we would expect to reduce TBKT.

To account for the presence of quantum fluctuations in
our theoretical modeling of the magnetism in BaNi2V2O8,
QMC simulations were performed for this S = 1 system
(Appendix K). However, in order to avoid the sign prob-
lem in QMC, a simplified Hamiltonian for BaNi2V2O8

has to be used, which includes only the first-neighbor in-
teraction Jn and the easy-plane anisotropy DEP(XY). The
dashed red and magenta lines in Fig. 3(b) present the
QMC simulations of the magnetic susceptibility parallel
(χQMC

||c ) and perpendicular (χQMC
⊥c ) to the c axis, respec-

tively. The best agreement with the experimental data was
achieved for JQMC

n = 8.07 meV and DQMC
EP(XY) = 0.04556 meV

(Appendix L). Note that JQMC
n is significantly smaller than

the coupling Jn = 12.3 meV of the original Hamiltonian for
BaNi2V2O8. This difference can be attributed to the exclu-
sion of the frustrated second-neighbor interaction Jnn and
the third-neighbor interaction Jnnn. Indeed, when the spin-
wave dispersions of BaNi2V2O8 are fitted using the simplified
Hamiltonian, the best fit is achieved for Jn = 8.8 meV and
DEP(XY) = 0.099 meV, in good agreement with the QMC es-
timates (Appendix N).

0 20 40 60 80 100 120

Ising- fluctuations 
2D
XY

2D XXZ 2D Heisenberg
isotropic

2D XY 

FIG. 5. Phase diagram of BaNi2V2O8 as obtained from our ex-
periments where the different phases are identified by the different
shaded colors. Solid black and blue circles show the temperature de-
pendence of the integrated intensity I(1,0, 1

2 ) of the (1, 0, 1
2 ) magnetic

Bragg peak and the correlation length, respectively. The solid dark
red and green lines show the magnetic susceptibility measured in
applied fields perpendicular and parallel to the c axis, respectively.

A comparison of the experimental data with the scaled
susceptibilities χ

QMC
⊥c and χ

QMC
||c reveals remarkably good

quantitative agreement over the full temperature range. χ
QMC
⊥c

and χ
QMC
||c display an anisotropic splitting that matches the

one observed in the experimental data below Tani ≈ 80 K.
Furthermore, χ

QMC
||c shows the characteristic minimum at

T QMC
XY = 51.55 K, which is in accord with the experimental

value TXY = 52 K. The nature of this minimum was veri-
fied by performing QMC computations for the Hamiltonian
without the DEP(XY) term. The results shown in Appendix M
reveal no minimum in the out-of-plane susceptibility χ

QMC
||c

for DEP(XY) = 0, hence confirming the connection between the
minimum at TXY and the crossover to the planar regime. Based
on the spin-spin correlation function C(r) from the QMC sim-
ulations, we furthermore extract T QMC

BKT = 40.2 K, which is in
reasonable agreement with TBKT = 44.70 ± 0.25 K extracted
from the experimental data.

IV. DISCUSSION

Our experimental investigation reveals that BaNi2V2O8

behaves as an ideal 2D magnet over the explored temper-
ature range up to 140 K. A corresponding phase diagram
as a function of temperature is presented in Fig. 5, display-
ing several distinct temperature regimes, in which various
anisotropies become relevant. The correlation length in com-
bination with magnetic susceptibility, and supported by the
results of classical and quantum Monte Carlo simulations,
reveal that BaNi2V2O8 behaves as an isotropic 2D Heisenberg
magnet at high temperatures above Tani ≈ 80 K. A weak XY
anisotropy is observable below Tani which becomes significant
below TXY = 52 K defining thus a 2D XXZ regime with only
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a weak planar anisotropy for TXY < T < Tani, and a 2D XY
regime with predominantly planar spins for T < TXY.

The critical exponent of the order parameter, as ex-
tracted from the elastic neutron measurements, reveals that
the 2D XY behavior extends below TN = 47.75 K down to
TEA = 46 K, defining thus a 2D XY regime for TEA<T <TXY.
Below TEA, the effective exponent β extracted from the
neutron measurements is reduced to an intermediate value be-
tween the values for the 2D XY and the 2D Ising model, which
can be associated with the presence of Ising-like fluctuations
due to a weak in-plane easy-axis anisotropy. The influence
of easy-axis anisotropy is however not observed in the muon
measurements which instead suggest that the 2D XY regime
extends down to much lower temperatures. This disagreement
is attributed to the different timescale of the muon and neutron
probes and indicates that below TEA = 46 K the magnetic
moments are actually slowly fluctuating towards the easy-axis
directions, rather than statically pointing along them.

It is interesting to compare this result to the predictions
of José et al. [28] who shows that an infinite, classical 2D
magnet with both planar anisotropy and sixfold in-plane easy-
axis anisotropy, will first undergo a BKT transition, and then
another transition at a lower temperature Tc < TBKT where
the spins order in one of the six preferred directions selected
by the symmetry-breaking perturbation. In BaNi2V2O8, the
replacement of this second transition by a crossover in the
fluctuations is maybe due to quantum effects that were not
included in this model.

We now discuss the nature of the phase transition to static
magnetic order at TN in BaNi2V2O8, which is characterized
by the 2D XY critical exponent and, therefore, is not induced
by the 2D Ising easy-axis anisotropy or 3D couplings. Such
a transition is prohibited by the Mermin-Wagner theorem in
the thermodynamic limit of an ideal 2D XY magnet, how-
ever, as shown by Bramwell et al. [24], spontaneous static
magnetization always occurs in a finite system, even in the
absence of interplane coupling. These finite regions can be
large and in a real material such as BaNi2V2O8 could be
due to domains. The domains might either be static, such as
structural domains, or reflect the existence of more dynamic
and temperature-dependent magnetic domains. In the pres-
ence of a weak interplane coupling Jout, the domain length
scale Ldomain must be smaller than Leff = dNi

√
Jn/|Jout|, where

Jn is the intraplane coupling, in order for the transition to
retain its 2D XY character [23]. The relevance of this scenario
for BaNi2V2O8 is suggested by the agreement of the measured
critical exponent β = 0.21 ± 0.013 with the theoretical value
β = 0.23 for a finite-size 2D XY magnet. We speculate that
just below TN, the domains can exhibit any in-plane mag-
netic ordering direction and the spins fluctuate isotropically,
whereas below TEA the moments fluctuate towards the sixfold
in-plane easy axes. Inelastic neutron scattering does not find
any evidence for interplane interactions Jout, but only sets
the upper bound of |Jout| < 10−4Jn which, however, allows
a lower bound on Leff to be estimated as Leff > 74.5 nm.
However, since Ldomain < Leff , this lower bound on Leff does
not provide information on the size of the domains Ldomain.
This may be the topic of a future investigation.

Finally, we observe that BaNi2V2O8 exhibits BKT physics.
In particular, the BKT scaling accounts well for the thermal

behavior of the correlation length and better than any of the
other conventional models. The extracted BKT transition tem-
perature TBKT = 44.70 ± 0.25 K falls below TN, as expected
for finite 2D XY systems [23,24], and its value is in overall
agreement with the previously reported values of 43.3 K [30]
and 40.2 K [31]. The residual differences may be attributed
to differences in the values of TN and the analyzed temper-
ature regions. CMC simulations based on the Hamiltonian
of BaNi2V2O8 confirm the presence of vortex excitations,
and yield T CMC

BKT = 55 K, while quantum Monte Carlo using
a simplified, sign-problem free model yields T QMC

BKT = 40.2 K,
respectively.

In conclusion, this comprehensive experimental and theo-
retical investigation identifies BaNi2V2O8 as a rare example of
an ideal 2D magnet at all temperatures, unlike most quasi-2D
magnetic compounds which instead show clear indications for
3D critical behavior. Our main achievements are (i) the devel-
opment of a consistent understanding of the critical behavior
of BaNi2V2O8 both below and above TN, (ii) the identification
of distinct temperature regimes where the system behaves
as a finite-size 2D XY, 2D XXZ, and 2D Heisenberg anti-
ferromagnet, (iii) the confirmation of BKT-scaling behavior,
and (iv) agreement of our experimental results with classical
and quantum Monte Carlo simulations using magnetic model
Hamiltonians for BaNi2V2O8.
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APPENDIX A: EXPERIMENTAL DETAILS FOR THE
NEUTRON SCATTERING MEASUREMENTS

The single-crystal neutron scattering measurements of
BaNi2V2O8 were performed on the cold neutron triple-axis
spectrometer, TASP, at the Paul Scherrer Institute (PSI),
Switzerland. The instrument was equipped with a vertically
focused pyrolytic graphite (002) PG(002) monochromator and
a horizontally focused PG(002) analyzer. A single-crystal
sample with a mass of 550 mg was placed inside an Or-
ange cryostat which cooled it down to the base temperature
of T = 1.47 K. The measurements were performed within
the (h − k

2 , k, h
2 ) scattering plane which allowed the (1, 0, 1

2 )
magnetic Bragg peak to be reached.

For the measurements of the critical exponent and order-
ing temperature TN, the analyzer was set flat and the final
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FIG. 6. Sketch of the (h − k
2 , k, h

2 ) scattering plane of
BaNi2V2O8 measured on TASP. The green and purple lines
show the directions of the elastic Qh and A3 scans, respectively,
through the (1, 0, 1

2 ) magnetic Bragg peak. The Qk and A3 scans
for the correlation length measurement which were performed in
two-axis mode are given by the orange and purple lines, respectively.

wave vector was fixed at kf = 1.23 Å−1 providing a energy
resolution of 0.074 meV which was determined by measur-
ing the full width at half maximum (FWHM) of the elastic
incoherent scattering at the base temperature. To improve
the statistics, elastic scans of both the sample angle (A3)
and wave-vector transfer Qh were performed through the
(1, 0, 1

2 ) magnetic Bragg peak at many temperatures within
the range 1.47–56 K. The directions of these measurements
are shown in Fig. 6 by the purple and green lines, respectively,
where the longitudinal Qh scans were performed along the
(h, 0, h

2 ) direction. The Qh and A3 resolution widths were
found to be 
Qh = 0.010 [reciprocal lattice units (r.l.u.)] and

A3 = 0.468◦, respectively, by fitting the FWHM of these
scans at base temperature using the Pearson VII function.
This function was found to provide the best description of the
instrumental resolution function.

To measure the temperature dependence of the correlation
length, the TASP spectrometer was used in two-axis diffrac-
tion mode with the analyzer removed so that both elastic and
inelastic signals were measured simultaneously. A PG filter
and 40’ collimator were placed between the monochroma-
tor and sample and the incident wave vector was fixed at
ki = 2.662 Å−1. A3 scans through the (1, 0, 1

2 ) position were
measured at 1.47 K and over the temperature range from 48 to
68 K in steps of 0.25 and 1 K (purple line in Fig. 6). The A3
angle resolution was 
A3 = 0.387◦ as determined from the
FWHM of the scan through the (1, 0, 1

2 ) magnetic Bragg peak
at the base temperature.

The correlation length was also investigated by measuring
transverse Qk scans through the (1, 0, 1

2 ) position (orange line
in Fig. 6) to improve the statistics and check the reproducibil-
ity of the results. These measurements were performed over
the temperature range 48–140 K with steps of 0.25, 0.5, 1,
2, 5, 10, and 40 K depending on the temperature region. The
TASP instrument settings were kept the same as for the A3
scans. The measurements were performed in the (h − k

2 , k, h
2 )

scattering plane along the (1 − k
2 , k, 1

2 ) direction. The Qk res-
olution was found to be 
Qk = 0.0102 (r.l.u.) as determined
from the FWHM of the scan at the base temperature.

To extract the correlation length from the Q and A3 scans
collected in two-axis mode, these scans were fitted by a
Lorentzian function convolved with the respective resolution
function. The correlation lengths ξA3 and ξQ were taken to be
the inverse of the FWHM of this fitted Lorentzian converted

FIG. 7. The inverse FWHM width of the elastic neutron A3 scans
through the (1, 0, 1

2 ) magnetic Bragg peak plotted as a function of
temperature.

to the units of inverse angstrom. ξA3 and ξQ were found to be
in good agreement with each other and were fitted simultane-
ously during the analysis.

APPENDIX B: TN FROM THE NEUTRON
MEASUREMENTS

When a magnetic system has long-range magnetic order, its
magnetic Bragg peaks are delta functions whose experimental
FWHM is determined only by the resolution function. On
heating, the loss of the long-range magnetic order at TN leads
to a finite broadening of this peak. Thus, the FWHM of the
magnetic Bragg peak is a sensitive parameter to investigate
the ordering temperature.

Figure 7 shows the inverse FWHM of the (1, 0, 1
2 ) mag-

netic Bragg peak of BaNi2V2O8 plotted as a function of
temperature over the range 1.5–56 K. The FWHM was de-
termined by fitting the Pearson VII function to this peak at
each temperature. The results reveal that the inverse FWHM
is constant at finite temperatures below T < 47.5 K within the
fitting error, while above T = 47.75 K it sharply decreases.
This suggests that TN = 47.75 K.

APPENDIX C: TN FROM μ+SR MEASUREMENTS
IN A WEAK TRANSVERSE FIELD

Muon spin rotation measurements were also used to de-
termine the value of the Néel temperature. Weak transverse
field (TF) μ+SR measurements were performed on a single
crystal of BaNi2V2O8 using the EMU spectrometer at the
ISIS Neutron and Muon Source, UK [36]. The sample was
oriented so that the muon beam was perpendicular to the
honeycomb plane of the crystal. The data were collected over
the temperature range 45–100 K in a transverse magnetic field
of BTF = 20 G. The high-temperature spectra measured above
T = 47.5 K were fitted by the function [37]

A(t ) = ATF e−λt cos(ωTF t + φ) + Aλbg e−λbgt , (C1)
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FIG. 8. Temperature dependence of the nonmagnetic volume
fraction of the muon signal measured in a weak transverse field. The
solid red line gives the best fit using Eq. (C3).

where t is time, ATF is the amplitude of the muon spin os-
cillations due to the applied transverse field, and ωTF is the
Larmor precession frequency of these oscillations which for
BTF = 20 G is ωTF = 0.27 MHz. The exponential prefactor
describes the damping of the oscillations with relaxation rate
λ. The second nonoscillating term describes the background
contribution.

At temperatures below TN a second oscillation mode was
clearly observed in the data which is caused by the static local
internal field due to the long-range magnetic order. To account
for this, the fitting function becomes

A(t ) = ATF e−λt cos(ωTF t + φ)

+ Ast e−λstt cos(ωstt + φst ) + Aλbg e−λbgt . (C2)

Here, Ast, λst, ωst, and φst are the muon fraction, damping,
frequency, and phase of the second oscillation, respectively.
Figure 8 shows the temperature dependence of the nonmag-
netic volume fraction V (T ) = ATF(T )

ATF(100)
which is obtained from

the extracted amplitudes ATF(T ), normalized to the amplitude
ATF(100) at the highest temperature T = 100 K. The fraction of
18% remaining below TN is associated with the fly-past mode
used in the experiment.

To extract the transition temperature TN, the temperature
dependence was fitted using the sigmoidlike function [38,39],

V (T ) = 1

1 + exp
( TN−T

δT

) + bg, (C3)

where bg is the background and δT describes the width
of the transition. The Néel temperature was found to be
TN = 47.70 ± 0.01 K, which is in good agreement with the
TN = 47.75 K estimated from the temperature dependence of
the neutron diffraction measurements.

APPENDIX D: ZERO-FIELD μ+SR MEASUREMENTS

Zero-field μ+SR measurements were performed on a sin-
gle crystal of BaNi2V2O8 using the EMU spectrometer at

FIG. 9. ZF-μ+SR spectra at (a) T = 8 K, (b) T = 48 K, and (c)
T = 48.5 K. The single-crystal sample was oriented so that the beam
was parallel to the c axis.

the ISIS Neutron and Muon Source, UK [36]. The sample
was oriented so that the muon beam was perpendicular to the
honeycomb plane of the crystal and measurements took place
for temperatures in the range 8–48.5 K. Figure 9(a) shows
the ZF-μ+SR spectrum collected at T = 8 K. There are clear
oscillations caused by the internal magnetic field of the sample
due to the long-range magnetic order. The oscillations are
modulated suggesting the presence of two frequencies which
can be assigned to two inequivalent muon stopping sites with
different internal fields. To extract these frequencies the data
was fitted using the function

A(t ) =
2∑

i=1

Ai e−λit cos(2π fit ) + Abg. (D1)

Here, A1 and A2 are the amplitudes and f1 and f2 are the
frequencies of the two muon sites, respectively. The nonoscil-
lating term Abg describes the background signal due to the
interaction of the muons with the silver sample holder. The
best fit at 8 K was achieved for f1 = 3.946 ± 0.002 MHz
and f2 = 5.066 ± 0.002 MHz. These frequencies are related
to the internal fields |Bi| of the two muon sites via the relation
fi = γμ|Bi|/2π , where γμ is the muon gyromagnetic ratio.

To explore the temperature dependence of the oscillations
observed at 8 K, the ZF-μ+SR spectra of BaNi2V2O2 were
measured at finite temperatures over the range 8–48.5 K.
The extracted frequencies f1 and f2, are plotted as a func-
tion of temperature in Fig. 10 where they are represented
by the blue triangles and black circles, respectively. Although
the values of the two frequencies are different, they display the
same temperature dependence up T = 46 K, suggesting that
these frequencies arise from two different muon stopping sites
which observe the same magnetic behavior. Indeed, as shown
in Fig. 10, when f1 is scaled by the factor 1.28, it matches f2

over the temperature range 8–46 K. Moreover, the amplitude
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FIG. 10. The temperature dependence of the two frequencies, f1

(blue triangles) and f2 (black circles), over the temperature range
8–47.5 K, extracted from the ZF-μ+SR spectra by fitting Eq. (D1).
The red squares show the temperature dependence of frequency f1

multiplied by the factor of 1.28.

ratio is found to be 2:1 which is consistent with the trigonal
crystal structure of this compound.

Above T = 46 K the frequencies display noticeably differ-
ent thermal behavior, and at T = 47.5 K, f2 disappears. At
T = 48 K, the oscillations become almost unobservable in the
spectrum [Fig. 9(b)] and the fit does not converge, therefore
the extracted frequency is unreliable and is excluded from
Fig. 10. At temperatures above T = 48 K, the oscillations
disappear as shown by Fig. 9(c) which gives the spectrum at
T = 48.5 K.

The inconsistent thermal behavior of the frequencies above
T = 46 K can be attributed to the limitation of the muon
technique in the vicinity of the transition. Indeed, the high
relaxation rates of the oscillations in a critical region make
the fitting of the data unreliable. Indeed, for temperatures just
below TN, the internal fields are very weak and the correspond-
ing muon oscillations have low frequencies that cannot be
accurately determined due to the limited temporal resolution.
Thus, for the analysis of the order parameter described in the
main text, only the data below 46 K were used.

APPENDIX E: COMPARISON OF MAGNETIZATION
FROM THE MUON AND NEUTRON MEASUREMENTS

The black circles in Fig. 11 show the temperature depen-
dence of the integrated intensity of the (1, 0, 1

2 ) magnetic
Bragg peak extracted from the elastic neutron scans, which
is proportional to the square of the magnetization M2

n . The
blue squares show the temperature dependence of the squared
magnetization M2

m measured using μ+SR spectroscopy. Here,
M2

m was calculated from the temperature dependence of the
frequencies f1 and f2 observed in the ZF-μ+SR spectra. These
frequencies were averaged, taking into account their respec-
tive weights. The temperature dependence of the averaged
frequency fav is related to the temperature dependence of
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FIG. 11. The temperature dependence of the square of the mag-
netizations M2

n and M2
m, calculated from the integrated intensity of

the (1, 0, 1
2 ) magnetic Bragg peak measured by neutron scattering

(black circles) and from the frequencies observed in the ZF-μ+SR
spectra (red squares). Lines are guides to the eye.

the averaged internal magnetic field |Bav| at the muon sites.
|Bav| was calculated at each temperature using the relation
2π fav = γμ|Bav|, where γμ is the muon gyromagnetic ratio
and M2

m was taken as M2
m ∝ |Bav|2. The values of M2

m and M2
n

were scaled such that they match each other at the lowest
measured temperatures of 20–30 K. Indeed, if the system
is fully static at low temperatures, then the magnetic order
should be equally observed by both muon and the neutron
techniques.

The comparison of M2
m and M2

n for temperatures between
38 K and TN reveals that the muons observe lower static fields
for BaNi2V2O8 than the neutrons. This difference can result
from the different timescales of the muon and neutron spectro-
scopes. In particular, neutrons might not distinguish the slow
spin fluctuations of BaNi2V2O8 and, therefore, attribute them
to static signal, while muons correctly identify their dynamics.
We note that the value of M2

m is higher than that of M2
n at

8K. This indicates that the system is not fully static even at
20–30 K where the scaling was done.

APPENDIX F: CORRELATION LENGTH OVER
THE FULL TEMPERATURE RANGE

Figure 12 shows the correlation length ξ (T ) of BaNi2V2O8

plotted over the full temperature range up to 140 K, as
extracted from the inverse FWHM of the energy-integrated
magnetic signal at wave vector (1, 0, 1

2 ) after taking into
account the resolution broadening. At 68 K, ξ (T ) is com-
parable to the nearest-neighbor in-plane Ni2+-Ni2+ distance,
dNi = 2.90 Å.

APPENDIX G: ALGEBRAIC SCALING ANALYSIS
OF ξ ON LOGARITHMIC SCALE

In order to establish whether the correlation length of
BaNi2V2O8 follows conventional power-law scaling, ξ ∝ t−ν ,
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FIG. 12. The correlation length ξ (T ), as a function of tempera-
ture T up to 140 K.

the correlation length was plotted on a logarithmic scale as a
function of the logarithm of the reduced temperature t , over
the temperature range 48–68 K. Figure 13 reveals that ln ξ

does not follow a straight line as a function of ln t , therefore
no single power-law scaling can describe ξ (T ) well. None of
the fits to the conventional power laws (2D Ising, 3D Ising,
3D XY, and 3D Heisenberg) agree with the data over the entire
temperature range, although the 2D Ising model gives better
agreement than the others.

APPENDIX H: BKT SCALING COMPARED
TO OTHER 2D MODELS

Figure 14 shows ln ξ plotted as a function of ln t over the
temperature range 48–68 K. The fit to the 2D Ising model
scaling, which was found to yield a better agreement than the
other conventionalf powers (see Appendix G), is shown. The
resulting straight line noticeably deviates from the experimen-
tal data, especially close to TN, for ln t � −4. The fit to the 2D
Heisenberg model [Eq. (2) in the main text] is also shown. It
deviates strongly from the experimental data for ln t < −2.68,
and thus 2D Heisenberg model scaling describes ξ well only
for temperatures above 51 K. Finally, we include the BKT
scaling formula [Eq. (3) from the main text]. We find that
the BKT model reproduces the data over the entire explored
temperature range, and especially in the vicinity of TN, where
neither the power laws nor the 2D Heisenberg model follow
the data.

APPENDIX I: BKT SCALING OF ξ(T ) OVER DIFFERENT
TEMPERATURE RANGES

The correlation length were analyzed using BKT theory
over several temperature regions, from 48 K to Tmax, where
Tmax = 66, 60, and 55 K, to assess the sensitivity of the
extracted value of TBKT on the temperature range used in
the fitting. The results are presented in Fig. 15 and reveal
that TBKT lies within the range of 44.44 K<TBKT<44.95 K.
Therefore, TBKT is fairly insensitive to the explored
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FIG. 13. Correlation length as a function of the reduced temper-
ature on a logarithmic scale over the temperature range 48–68 K.
The lines show fits to the conventional power laws ν = 1 (2D Ising,
χ 2 = 10.89), ν = 0.64 (3D Ising, χ 2 = 57.7), ν = 0.66, (3D XY,
χ 2 = 53.43), and ν = 0.7, (3D Heisenberg, χ 2 = 45.47).

temperature range and can be averaged to the value
TBKT = 44.70 ± 0.25 K for further analysis.

APPENDIX J: DETAILS OF CLASSICAL
MONTE CARLO SIMULATIONS

For our classical Monte Carlo calculations we use a stan-
dard single-spin update Metropolis algorithm for a lattice with
N = 1560 honeycomb sites and periodic boundary conditions.
After a sufficiently long equilibration time the real-space spin
configurations, spin correlations, and magnetic susceptibility
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FIG. 14. Correlation length as a function of the reduced temper-
ature on a logarithmic scale over the temperature range 48–68 K,
and fitted to the 2D Ising model scaling (ν = 1, χ2 = 10.89), the
2D Heisenberg model scaling (χ 2 = 11.93), and the BKT scaling
(χ 2 = 6.98).
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FIG. 15. Correlation length of BaNi2V2O8 fitted using the BKT
formula over the temperature range from 48 K to Tmax where (a)
Tmax = 66 K, (b) Tmax = 60 K, and (c) Tmax = 55 K.

χμ (μ = x, y, z) are obtained from the numerical outputs for
different temperatures T . The susceptibility χμ is calculated
from

χμ(T ) = 1

kBT
〈(Mμ − 〈Mμ〉)2〉, (J1)

where Mμ is the μ component of the magnetization
Mμ = ∑N

i=1 Sμ
ri . To eliminate statistical noise, the susceptibil-

ity is averaged over 400 000 Monte Carlo steps (where one
step consists of N single-spin updates). Likewise, the spin
correlations

Cμ(r) = 1

N

N∑
i=1

〈
Sμ

ri
Sμ

ri+r

〉
(J2)

are calculated as a function of the distance r = |r| and the re-
sulting correlation function Cμ(r) is fitted against an exponen-
tial decay ∼e−r/ξ for large temperatures (above the BKT tem-
perature) and an algebraic decay ∼r−η for small temperatures
(below the BKT temperature). The temperature T = 55 K
where the in-plane correlation functions Cx(r),Cy(r) show
an exponent η = 1/4 and the correlations change from an
algebraic to an exponential behavior is identified as the BKT
transition temperature. At selected Monte Carlo times and
for various different temperatures, snapshots of the real-space
spin configurations are analyzed with respect to the occur-
rence of vortices [see Figs. 4(a)–4(c) of the main text]. For
each hexagon of the honeycomb lattice, we consider the
azimuthal angles (i.e., in-plane spin orientations) φa (a =
0, 1, . . . , 5) for the six adjacent honeycomb sites. To find
the winding number w of a possible vortex located at this
hexagon we calculate the differences 
φa = φa+1 − φa (with
φ6 ≡ φ0) which, due to the 2π -periodic property of azimuthal
angles, can be defined such that they obey −π < 
φa � π .
The winding number w associated with the spin configuration
around a hexagon is then given by w = ∑5

a=0 
φa/(2π ). In
Figs. 4(a)–4(c) of the main text, we mark a vortex with w = 1
(w = −1) by a solid (open) sphere.

FIG. 16. Magnetic susceptibility of BaNi2V2O8 parallel and per-
pendicular to the c axis obtained by QMC simulations with and
without the DEP(XY) term.

APPENDIX K: DETAILS OF QUANTUM MONTE
CARLO SIMULATIONS

For the QMC simulations, we used the stochastic series
expansion quantum Monte Carlo method with the directed
loop update [40–42] for the Hamiltonian

H = JQMC
n

∑
〈i, j〉

Si · S j +
∑

i

hani
i . (K1)

The parallel susceptibility χ‖c was measured by introducing
the anisotropy

hani
i = DQMC

EP(XY)(S
z
i )2, (K2)

which is diagonal in the standard Sz computational basis. In
order to access χ⊥c, the introduced anisotropy was

hani
i = DQMC

EP(XY)(S
x
i )2

= DQMC
EP(XY)

4
[(S+

i )2 + S+
i S−

i + S−
i S+

i + (S−
i )2], (K3)

which is off diagonal, but can still be sampled without a sign
problem within the framework of the directed loop update.
This global spin rotation allows us to readily measure both
susceptibilities in the Sz basis. We find that the reported results
are converged to the thermodynamic limit within the statistical
error bars for L = 42.

APPENDIX L: SCALING OF THE QMC SIMULATIONS
TO THE EXPERIMENTAL DATA

The QMC computations provide the magnetic suscep-
tibility χ

QMC
red (ζ ) in terms of the dimensionless parameter

ζ = kBT/JQMC
n , which is scaled to compare to the experimen-
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FIG. 17. Single-crystal magnetic excitation spectrum of BaNi2V2O8 along the (0, k, 0) direction (a) measured at T = 3.5 K [27] and
(b) computed using the spin-wave theory. (c) Computed energy scan at Q = (1, 0, 0). The calculations used the Hamiltonian [Eq. (N1)] with
parameters Jn = 8.8 meV, Jout = −0.00045 meV, DEP(XY) = 0.099 meV, and DEA = −0.0014 meV.

tal data to

χQMC(T ) = NA(gQMC)2 μ2
B

JQMC
n

χ
QMC
red

(
kBT/JQMC

n

) + χdia, (L1)

where NA is the Avogadro number, g is the g-factor, μB

the Bohr magneton, and χdia a constant associated with
the diamagnetic contribution. The best agreement with
the experimental data was achieved for JQMC

n = 8.07 meV,
gQMC

||c =2.07, gQMC
⊥c =2.17, and χdia of order 10−4 cm3/mol Ni.

These g-factors are similar to the experimentally measured
values of g||c = 2.225 and g⊥c = 2.243 [30].

APPENDIX M: RESULTS OF QMC COMPUTATIONS
FOR THE HAMILTONIAN WITHOUT THE DEP(XY) TERM

Figure 16 presents the QMC simulations of the magnetic
susceptibility parallel and perpendicular to the c axis com-
puted for the Hamiltonian of BaNi2V2O8 with and without
the DEP(XY) term. The results reveal isotropic behavior for the
magnetic susceptibility computed without the anisotropy term
over the entire temperature range.

In contrast, the magnetic susceptibility computed for
the Hamiltonian with planar anisotropy reveals strongly
anisotropic behavior. In particular, the magnetic susceptibility
computed parallel to the c axis has a characteristic minimum.
Thus, these computations confirm that the term DEP(XY) is
responsible for the anisotropy and, also, for the minimum at
TXY = 51 K observed in the χ

QMC
||c . Therefore, the minimum

at TXY observed in the experimental susceptibility can be
associated with the crossover to the XY-dominated regime.

APPENDIX N: SIMPLIFIED HAMILTONIAN OF BaNi2V2O8

The magnetic excitation spectrum of BaNi2V2O8 was mea-
sured at low temperatures in the magnetically ordered phase
using inelastic neutron scattering. The data were used to ob-

tain the Hamiltonian by fitting it to spin-wave theory, where
the first three intraplane nearest-neighbor interactions, the in-
terplane interaction, the easy-plane anisotropy, and the weak
in-plane easy-axis single-ion anisotropy of the Ni2+ magnetic
ions were considered. The instrument settings of these exper-
iments as well as the data analysis are discussed in Ref. [27].

Because a simplified Hamiltonian was used for the QMC
calculations, the spectrum was refitted to verify the accuracy
of this Hamiltonian. Figure 17(a) shows the measured spin
waves along the (0, k, 0) direction while Fig. 17(b) shows the
corresponding spectrum computed using the SPINW MATLAB

library [43] for the simplified Hamiltonian

H = Jn

∑
〈i, j〉

Si · S j + Jout

∑
〈i, j〉′

Si · S j

+
∑

i

DEP(XY)
(
Sc

i

)2 +
∑

i

DEA
(
Sx

i

)2
. (N1)

Here, Jn and Jout are the first-neighbor intraplane and in-
terplane magnetic exchange couplings, while DEP(XY) and
DEA are the easy-plane and in-plane easy-axis single-ion
anisotropies, respectively. The simulations were performed
for all three twins and the results were averaged. The values
Jn = 8.8 meV, Jout = −0.00045 meV, DEP(XY) = 0.099 meV,
and DEA = −0.0014 meV provided the best agreement with
the data [see Fig. 17(b)]. In particular, Jn is responsible
for the energy scale of the dispersion shown in Fig. 17(a),
while the parameters DEP(XY) and DEA generate the en-
ergy gaps at the antiferromagnetic zone center. The sizes
of these gaps were extracted by fitting the experimental
data corrected for resolution effects and were found to be
E1 = 0.41 meV and E2 = 3.25 meV [27]. Figure 17(c)
presents the energy scan at Q = (1, 0, 0) computed for the
best fit parameters which reproduces both the gaps. The ex-
tracted values Jn = 8.8 meV and DEP(XY) = 0.099 meV are
very similar to the ones obtained by fitting the QMC simu-
lations to the susceptibility data.
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