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Abstract: Solar cells can harvest incident sunlight very efficiently by utilizing grating-based
light trapping. As the working principle of such gratings strongly depends on the number as well
as the propagation directions of the diffraction orders, the grating period is a key parameter. We
present an analytical model for optimizing the grating period, focusing on its impact on light
path enhancement and outcoupling probability. Based on the presented model, we formulate
guidelines to maximize light trapping in state-of-the-art high-end solar cells. The model increases
the understanding of the grating performance in systems like the III-V//Si triple junction solar
cell achieving record efficiency.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photovoltaic solar cells convert radiant energy from the sun into electrical energy. For a maximal
power conversion efficiency (PCE), the fraction of the incident sunlight that is absorbed in the
absorber layer of the solar cell must be maximized. Measures to increase the absorbed fraction
of sunlight are usually termed light management.

Light management comprises mainly of two categories: First, light in-coupling, which includes
all approaches to minimize reflective losses at the front, such as anti-reflective coatings or textured
interfaces. Second, for some absorber materials the penetration depth is much longer than the
absorber thickness in certain spectral regions of the incident sunlight. This means that only a
small fraction of the light reaching the absorber really can be absorbed. For example, silicon with
thickness > 100 µm absorbs weakly at wavelengths in proximity to its bandgap (appr. 1000–1200
nm) because its bandgap is indirect. For such materials, light trapping techniques are used to
increase the absorption. In simple terms this is done by “prolonging the average path length” of
the photons through the absorber, often by scattering at textured interfaces at one or both sides of
the solar cell.

In the 1980s, Yablonovitch together with Tiedje showed that the absorption in a weakly
absorbing layer can be enhanced up to a factor 4n2 when scattering layers are implemented
that randomize the light ergodically [1,2]. Miñano showed that the enhancement can reach an
even higher factor of 4n2/sin2θ, if the angular acceptance of the cell is restricted to a cone with
opening angle θ [3].

In conventional silicon solar cells, silicon wafers are textured with randomly distributed
pyramids, which are created during anisotropic wet-chemical etching processes. This approach
has been followed at least since 1974 [4] and is still applied in the current champion silicon solar
cell with 26.7% PCE (as of February 2022) [5,6].

Besides texturization schemes with random features, also periodic texturing has been investi-
gated for decades, for example for thin-film solar cells. In a carefully designed study Battaglia et
al. prepared thin-film silicon solar cells with periodic and random nanotextures with comparable
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geometrical dimensions and showed that the two devices performed similarly [7]. Bozzola and
coworkers optimized one- and two-dimensional gratings for thin-film silicon solar cells and
obtained designs, which approach the Lambertian limit for a large wavelength range [8]. Isabella
et al. presented a thin-film silicon solar cell with pyramidal gratings on front and back sides with
decoupled periods. These cells exceed Green’s limit, a generalized version of the 4n2 limit, for a
large spectral range [9].

In the following paragraphs, we look at works on solar cells with optically thick absorbers,
where waveguide effects can be neglected. In 1989 Kiess and Morf demonstrated experimentally
that rectangular gratings in aluminum at the back of a silicon wafer increase the absorption
[10]. In 1995, Heine and Morf designed blazed sub-micrometer gratings for solar cells such
that reflection of light into the zeroth order is suppressed [11]. In 2011, Gjessing, Sudbø and
Marstein found that a ‘zig-zag’ grating, which can be seen as an overlay of two blazed gratings
which are rotated by 90° with respect to each other. This outperforms other two-dimensional
designs [12], which corroborates the findings of Heine and Morf. The relevance of grating-based
light trapping could recently be shown by the current champion III-V-on-silicon triple-junction
solar cell with 35.9% PCE, featuring a crossed grating with period 1 µm at the rear of the silicon
bottom cell [13,14].

Over the years, many different geometries for periodic gratings have been investigated and
various optimization criteria have been applied. They use different design criteria, for example
maximizing the coupling to diffraction orders that propagate at high angles within the cell and
suppressing reflection into the 0th order [11,15], or by maximizing the diffraction efficiency
into trapped orders [12,16]. Other studies use agnostic parameter scans [17,18] or optimization
methods such as the Bayesian optimization method to further enhance the absorption in the
silicon subcell by improving the geometry of the cross grating [19].

The different grating geometries make it difficult to extract the influence of the grating period,
which probably is the most significant parameter to characterize a grating as it governs the
propagation angles and thus significantly affects the light path enhancement and the outcoupling
probability. Still, part of the grating periods identified as beneficial in silicon based solar cells
can be categorized into two groups: (1) Periods between 300 nm and 350 nm, leading to first
diffraction orders propagating almost parallel to the substrate, e.g. [10,17]. (2) Periods around
1000 nm, maximizing the number of trapped orders while avoiding higher orders in the escape
cone, e.g. [12,14,17,18]. These two groups do not cover all of the results as some of the optimized
grating structures have periods in between these values, thus forming a third group at about
700nm [11,19].

An analysis focused on the grating period was done by Yu, Raman and Fan, who showed in
2010 that periodic textures can enhance absorption more than 4n2 in certain spectral and angular
regions [20]. For that work they developed a statistical temporal coupled-mode theory of light
trapping based on a rigorous electromagnetic approach, which works for thin layers.

In this work, we investigate the fundamental influence of the grating period for light trapping
in optically thick solar cells. First, we develop a simple formalism to estimate the light-path
enhancement (LPE) caused by crossed and hexagonal gratings at the back of non-absorptive bulk
layers, where the period is the only parameter used to describe our gratings. Even though the
model is based on very different assumptions than the theory developed by Yu, Raman and Fan,
we show that both approaches lead to identical results for the LPE. Expanding the formalism to
absorbing materials, we investigate the dependence of beneficial period ranges on cell thickness
and parasitic absorptance. Furthermore, we compare the predictions of our model to a recent
rigorous optimization study and experimental results. The model developed and discussed in
this work deepens our insight into the key design parameters for periodic gratings and allows
us to formulate guidelines for maximizing light trapping in state-of-the-art high-end solar cells.
Here, we restrict ourselves to two-dimensional gratings, because they occupy larger fractions of
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the optical phase space than one-dimensional gratings, which corresponds to a larger light-path
enhancement [21].

2. Light trapping – the fundamentals

For a very basic light trapping model, the limiting case without absorption in the system is
investigated. The key figure then is the Light Path Enhancement (LPE) factor in the system,
which is defined as the length of the enhanced light path divided by the thickness of the solar cell.
In the basic model, the LPE is calculated using two main ingredients: Firstly, the primary light
path enhancement L0, defined as the mean path length ℓ0 light travels until the first outcoupling
possibility divided by the wafer thickness w, L0 = ℓ0/w. Secondly the escape probability Pout at
every interface with outcoupling possibility. The LPE can be calculated as a geometric series
[22,23] resulting in

LPE =
L0

Pout
. (1)

For the well-known Lambertian case with ideal rear side reflector, L0 = 2 · 2 = 4. Here, one
factor comes from the rear-side reflection (double pass) and the other factor from the average
path enhancement caused by the scattering. If the front interface is perfectly transmitting apart
from total internal reflection, Pout = 1/n2, with the refractive index n. Consequently, we obtain
the “Lambertian limit” 4n2 [1] for the LPE. It is worth noting that for typical refractive indices
of inorganic semiconductors, e.g. n ≈ 3.5 for silicon at wavelengths close to the band edge,
the contribution of Pout to the LPE (12.25) is much larger than that of L0. This indicates that
Pout has a major impact on light trapping, as was also observed by Yablonovitch [24]. In the
following, we will investigate this relation for diffraction gratings.

3. Modeling the impact of the grating period in the weakly absorbing limit

For understanding the influence of the grating period in grating based light trapping, we first
perform an LPE analysis of an absorption free system using a basic model. Afterwards we
evaluate the photocurrent density of absorbing systems, also including parasitic absorption.

For all the models, the following definitions and assumptions apply:

1. The investigated solar cell is optically thick. Hence, no wave-optical interactions (interfer-
ence or wave-guide effects) between front and rear interface are considered.

2. The front interface is perfectly transmitting apart from total internal reflection (T = 1 for
incidence angles smaller than the critical angle).

3. The rear interface consists of a 100% reflective grating.

4. The solar cell is surrounded by air (n = 1.0).

5. L0 is calculated from the polar diffraction angles using the term 1/cos θ, averaged over all
diffraction orders and multiplied by 2 (double pass).

6. We assume an equal intensity distribution over all diffraction orders (all diffraction
efficiencies have the same value). This choice for achieving excellent light trapping is
motivated by the following consideration: Miñano [3] states that the thermodynamic upper
limit for light trapping is achieved if all trapped orders are illuminated with maximum
brightness. If all diffraction efficiencies have the same value, the outcoupling probability
is minimized (due to reciprocity), and high brightness in all trapped orders is achieved
very efficiently. The assumption of equal distribution implies a requirement for the unit
cell, which must be designed such that equal coupling efficiencies are ensured. Of course,
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this choice limits the applicability of the findings. For example, the results are not valid for
systems, which do not couple into certain diffraction orders (e.g. Reference [16])

7. Pout is calculated as the intensity in the outcoupling orders divided by the overall intensity
impinging on the front surface from inside the cell.

8. The grating period Λ is defined as the length of the lattice vectors that span the unit
cell. The lattice-plane distance d is the distance between adjacent lattice planes. For
crossed gratings, d = Λ, while for hexagonal gratings d =

√
3/2 · Λ (Fig. 1). Since the

lattice-plane distance mainly governs the diffraction effects, d is used as key parameter
throughout this manuscript. Since d and Λ are directly related, we still use the term period
in headings and text for simplicity.

Fig. 1. Definition of period Λ and lattice plane distance d for the hexagonal grating.

3.1. Simple (statistical) way to calculate L0 and Pout

To demonstrate the major influence of the grating period, we apply a basic statistical model,
assuming no absorption in the system. The refractive index of the substrate is assumed as
n = 3.5, which is very close to the value for silicon in the wavelength range 1000–1200 nm.
Based on the equal distribution of diffraction efficiencies, Pout is then given as the relation of the
number of diffraction orders in the escape cone divided by the total number of diffraction orders
propagating in the bulk material.

In a first step, L0 and Pout are not calculated as exact values but as statistical values:
We assume L0 = 2 · 2 as in Lambertian case. This is a good approximation for large d/λ, but

will be inaccurate for small lattice plane distances.
While for the calculation of Pout the accurate number of escape modes is taken, the number of

all modes is statistically calculated from the area of the kxy space representing propagating waves
in the bulk material divided by the area of the 1st Brioullin zone:

area of the kxy space in bulk = π
(︃
2πn
λ

)︃2
(2)

area of 1st Brioullin zone

(crossed grating)
=

(︃
2π
d

)︃2
(3)

area of 1st Brioullin zone

(hexagonal grating)
=

√
3

2

(︃
2π
d

)︃2
(4)
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The resulting formulae for the LPE are:

LPE (crossed) =
4

Pout,crossed
=

4πn2
(︂

d
λ

)︂2

Mesc
(5)

LPE (hexagonal) =
4

Pout,hexagonal
=

4πn2 2√
3

(︂
d
λ

)︂2

Mesc
(6)

with the number of escape modes Mesc

In Fig. 2 the LPEs for the crossed and hexagonal gratings are displayed. It is interesting to
note that these equations, which we obtained from very simple assumptions, lead to exactly the
same relationships as Yu et al. [20] derived them for multi-resonant light trapping in weakly
absorbing waveguides.
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Fig. 2. LPE calculated with the basic model for the crossed and hexagonal grating. Note
that this exactly agrees with the results from Yu et al [20].

Again, it is important to note that this basic model relies on many simplifications, resulting in
limited validity for small values of d/λ. However, the strong impact of the grating period on
mode ratio and outcoupling probability can already be seen with this formalism. So, we get
a first indication that there is a beneficial parameter range for d/λ just below 1 when several
diffraction orders can propagate in the substrate, but only the zeroth order can escape.

3.2. Improved model to understand the impact of the grating period

Until now, we used a strongly simplified approach, which will be refined in the following.
Here, we calculate the values L0 and Pout exactly, while we previously only estimated them
with statistical quantities. Here, we account for the divergence of the solar radiation as conical
illumination, leading to cones of diffracted light. To calculate L0, we integrate 1/cos ϑ over all
illuminated angles in the substrate. Pout is calculated as the area fraction of diffraction orders
within the loss cone divided by the total area of diffraction orders in kxy space (see Fig. 3):

Pout =

∫∫
illuminated, escaping 1 dkx dky∫∫
illuminated, substrate 1 dkxdky

. (7)

The basic concept used for calculating light trapping by the grating for conical illumination
can be found in [16,25]. Figure 4 shows L0, 1/Pout and LPE = L0/Pout for the crossed grating.
From the L0 plot (Fig. 4 a), it can be seen that strong light path enhancement occurs at d/λ
values corresponding to very high propagation angles. For very large d/λ values, L0 converges
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Fig. 3. Cones of diffracted light (red), represented in the kxy space (left) and in real space
(right). For the calculation of L0, 1/cos ϑ is integrated over all red circles. For calculating
Pout, the area of red circles within the dark grey area is divided by the area of all red circles.

to 2 as it approaches the Lambertian case (shown in the supplemental document, Fig. S2). The
1/Pout plot (Fig. 4 b) shows a stepwise change of the outcoupling probability determined by the
relation of modes (Eq. (7)). The largest step occurs at d/λ = 1, when the first higher orders
enter the escape cone. For very large d/λ values, 1/Pout converges to n2 = 12.25 as expected
for the Lambertian case (see supplemental document). Since the LPE (Fig. 4 c) combines both
parameters, both effects interact. Although very high and narrow peaks stand out, for a broadband
application such as solar energy conversion no relevant impact from these peaks is to be expected.
On the other hand, regions with high LPE values over a broader range of values are likely to
lead to good light trapping. This can be seen for the approximate intervals 0.64 < d/λ < 0.7
and for 0.81 < d/λ < 1. Similar observations can be made for the hexagonal case (shown in the
supplemental document, Fig. S3 and S4).
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Fig. 4. Plots for L0, 1/Pout and LPE=L0/Pout for the crossed grating. As reference, the
values for the Lambertian case are plotted as dashed line.

A comparison of the simple and the refined models is shown in Fig. 5. While the overall shape
and the main outcoupling effects can already be seen from the simple model, the detailed impact
of L0 and Pout on the LPE can only be identified in the plots based on the refined model. As
expected, the difference between the models is strongest for small d/λ values.
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Fig. 5. comparison of simple and refined models for crossed and hexagonal grating.

4. Modeling the impact of the grating period including absorption

For a more realistic assessment of light trapping in solar cells, we have to consider broadband
illumination and the wavelength-dependent optical properties (refractive index and absorption)
of the solar cell material. In this study, we focus on silicon using the optical data from Ref. [26].
To integrate the silicon absorption and parasitic rear-side absorption into the model, we extended
Goetzbergeŕs model for Lambertian light trapping [27] to systems with rear-side grating (details
in the supplemental document, section S1). With this, the absorptance in the bulk A(λ) is

A(λ) =
1 − I0(λ)

2Pout(λ)Rrear(λ) − I0(λ)[1 − Rrear(λ)] − G(λ)Rrear(λ)

1 − G(λ)Rrear(λ)
(8)

With the fraction of intensity reaching the rear after the first (perpendicular) pass I0, the rear
side reflectance at every interaction Rrear, and the intensity for all trapped light paths arriving
at the back side a second time G. In general, all these quantities are wavelength dependent.
Furthermore, I0 and G depend on the cell thickness w.

Once absorption and broadband illumination are considered, path length enhancement is
no meaningful parameter any longer since it strongly depends on absorption and wavelength.
Therefore, we use the wavelength dependent absorptance to calculate the photocurrent density
Jph:

Jph = q
1200 nm
∫

300 nm
ϕ(λ)AM1.5g · A(λ) dλ (9)

with the elementary charge q and the photon flux under AM1.5g illumination ϕ(λ)AM1.5g [28]. We
set the default cell thickness to 280 µm to make the results comparable with previous experimental
and theoretical work [13,19]. For a cell of this thickness, the photocurrent density without light
trapping and a perfect planar rear reflector would be 41.5 mA/cm2.

Figure 6 (left) shows the photocurrent density in dependence of the lattice plane distance
d for both grating types. For comparison, the value that could be expected for a cell of the
same thickness with Lambertian light trapping (calculated according to Ref. [29]) is shown as a
dashed line. Beneficial ranges for d can be identified around 750 nm and between 930 nm and
1090 nm for the crossed grating and around 670 nm and between 860 nm and 1080 nm for the
hexagonal grating. If one keeps in mind that for 280 µm thick solar cells the biggest potential for
light trapping is in the spectral range around 1100 nm, these values correspond well with the
ranges identified as beneficial for the weakly absorbing limit. In Fig. 6 (right), Jph is plotted for
various cell thicknesses for the crossed grating. As expected, the absolute values decrease with
decreasing cell thickness. However, the shape of the curves is very similar for all thicknesses.
The shift of the peak positions towards smaller d values with decreasing thickness can be well
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understood: For thinner cells the weakly absorbing spectral range for which light trapping is
beneficial is extended towards smaller wavelengths. Therefore, gratings with a smaller d are
most effective, since they also have an impact on smaller wavelengths. The same features can be
observed for the hexagonal grating (supplemental document, Fig. S5).
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Fig. 6. Photocurrent density in dependence of the lattice plane distance d for the fixed cell
thickness 280 µm and both grating types (left) and for a thickness variation (crossed grating,
right). The arrows at the right side indicate the photocurrent densities for Lambertian light
trapping at the corresponding thicknesses.

Typically, introducing rear-side light trapping also implies a certain amount of parasitic
absorption at the rear interface. In fact, balancing the light trapping performance and the
parasitic absorption is key for achieving a good overall performance. Therefore, it is important to
consider the impact of Rrear as well. To understand the main dependencies, Rrear is modeled as
wavelength-independent quantity.

These interrelations are displayed in Fig. 7. For Rrear = 1, the values are the same as in
Fig. 6 (left). With decreasing rear-side reflectance, gratings with smaller d get more favorable
compared to larger lattice-plane distances. If one assumes Rrear ≈ 0.95 as a very high but realistic
value, two peaks of similar height can be identified for the crossed grating: d = 0.75 µm and
d = 1.0 µm. These two values correspond well with the periods that achieved peak values in
the optimization by Tillmann et al. [19]. There, Jph is maximal at d = 0.755 µm, while for
lattice-plane distances just above 1 µm, a second maximum can be seen. The results are also
in accordance with the findings in Ref. [17] (with beneficial periods around 0.73 µm and 0.99
µm) and [18] (beneficial period around 1.08 µm). Given that the investigated gratings and the
used methods differ substantially, the convergence of the results confirms that our models are
capable to reproduce fundamental trends. Furthermore, our findings match perfectly with the
excellent light trapping performance of the crossed gratings with d = 1 µm which led to the
record efficiencies of Si based triple junction solar cells [13,14].
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5. Interpretation and conclusions

The presented models demonstrate the impact of the grating period on the light trapping
performance. The refined model introduced and discussed in sections 3.2 and 4 – which is a
stark simplification with respect to realistic systems – accounts for many important parameters
that influence the overall light trapping performance. Therefore, fundamental trends and
interdependencies can be reproduced well, and strategies for the grating optimization can be
derived. However, the model is not suitable for quantitative optimizations, because the absolute
values cannot be expected to be accurate, and small differences e.g. between peak heights should
be regarded as insignificant.

Based on our models the following conclusions can be drawn:

• For a good light trapping grating, the interplay of the primary light path enhancement L0
and the escape probability Pout is important. Both quantities need to be optimized together
to achieve high LPE and photocurrent density Jph.

• Small periods with very few propagating orders are not the best choice in most cases. They
only might be beneficial in cases with high parasitic absorption.

• The identified sweet spots feature a larger number of propagating orders, moderate L0
enhancements and a low Pout.

• No significant difference in performance can be expected between crossed and hexagonal
lattice symmetry.

• Keeping the parasitic absorption very low is crucial for achieving high Jph values.

With these guidelines, gratings for high efficiency solar cells can be designed and used as starting
points for further fine-tuning based on refined modelling and experimental evaluation. Due to the
high Jph level and the width of the peak, we recommend a crossed or hexagonal grating with a
period close to 1 µm for Si and III-V//Si solar cells. Furthermore, the presented models allow a
basic understanding why certain grating designs work particularly well in simulations (e.g. [19])
or champion solar cells [13,14].
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