
General Magnetic Transition Dipole Moments for Electron Paramagnetic Resonance

Joscha Nehrkorn,1, ∗ Alexander Schnegg,1 Karsten Holldack,2 and Stefan Stoll3, †

1Berlin Joint EPR Laboratory, Institut für Silizium-Photovoltaik,
Helmholtz-Zentrum Berlin für Materialen und Energie, Berlin, Germany

2Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung,
Helmholtz-Zentrum Berlin für Materialen und Energie, Berlin, Germany

3Department of Chemistry, University of Washington, Seattle, USA
(Dated: November 26, 2014)

We present general expressions for the magnetic transition rates in beam Electron Paramagnetic
Resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply
to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They
work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders.
The expressions are based on the concept of the (complex) magnetic transition dipole moment
vector. Using the new theory, we determine the parities of ground and excited spin states of high-
spin (S = 5/2) FeIII in hemin from the polarization dependence of experimental ground state EPR
line intensities.

PACS numbers: 07.05.TP; 07.05.Fb; 07.57.Pt; 76.30.-v

Electron paramagnetic resonance (EPR) is a spectro-
scopic technique that yields unique information on struc-
tural [1–7], magnetic [8–10] and electronic properties [11–
13] of paramagnetic states in material systems ranging
from proteins to nanomagnets and semiconductors. In
addition, EPR methods are increasingly used for con-
trolled manipulation of spin systems, which may form
the basis of spin quantum computing [14–17]. Experi-
mental design, interpretation, prediction and control of
the latter require general theoretical tools to calculate
EPR transition energies and probabilities. These prop-
erties are determined by the spin center under study and
the choice of the experimental parameters.

In a standard EPR experiment, linearly polarized low-
frequency microwave (mw) radiation is coupled into a res-
onator exposed to a static magnetic fieldB0 such that the
radiation magnetic field component B1(t) of the ensuing
standing wave is perpendicular to B0. With a linear
detector, the measured EPR spectral intensity is propor-
tional to the power absorbed by the sample, which in
turn is proportional to the quantum mechanical transi-
tion rate. For this standard geometry, compact expres-
sions for the EPR transition rate can be found in the lit-
erature [18, 19]. Analytical expressions for a single spin
without fine or hyperfine interactions are known [20–25].

However, the limitation to a resonator, linear mw
polarization and orthogonal orientation between static
and oscillating magnetic fields restricts the versatility of
EPR experiments. Recently, experimental setups that
go beyond these limitations have become more prevalent.
Novel non-resonant beam EPR setups explore very broad
field (up to 30 T) and frequency (up to THz) ranges.
These high field/high frequency EPR experiments are
based on a range of excitation sources, ranging from lab-
based semiconductors, lasers and tube sources [26–29] to
synchrotrons [30–33] and free electron lasers [34, 35]. De-
spite the variety of source technology, these approaches

are all based on quasioptical techniques that transmit mw
or THz radiation in open space instead of wave guides or
coaxial cables. This provides much larger freedom for the
alignment of the radiation beam relative to the external
magnetic field.

Thereby, entirely new EPR experiments became possi-
ble. These include experiments in Faraday geometry [36],
and the employment of split ring resonator arrays as THz
metamaterials for selective EPR excitation [37, 38]. Un-
like with resonators, in non-resonant setups circular or
unpolarized radiation can be employed. Circularly po-
larized radiation can be used to determine the sign of
g factors [25, 39–42] and is a possible selection tool in
EPR based quantum computing [43]. Depending on the
handedness of the circularly polarized radiation, different
sets of EPR transitions can be adressed in single-molecule
magnets [36]. For dynamic nuclear polarization, it was
recently shown that the enhancement depends on the
handedness of the circular polarized mw radiation [44].
Unpolarized radiation, or radiation that is extracted from
beam paths which do not conserve the polarization of the
radiation, are used in high-field cw EPR [27, 29, 45–48],
for frequency-swept cw EPR [33, 49, 50] as well as for
free-electron laser based cw EPR experiments [34].

Spectral intensities from these new experimental de-
signs cannot be described by current theory, which is
limited to perpendicular and parallel excitation geome-
tries with linear polarization. Here, we derive compact
and general expressions for EPR magnetic transition in-
tensities that cover all excitation geometries and polar-
izations. We show that the transition intensities can be
described in an elegant way using a general magnetic
transition dipole moment (mtdm) vector µ. The mtdm
is the magnetic analog of the electric transition dipole
moment vector widely used in optical spectroscopy.

First, we treat a solid-state sample containing iso-
lated identically oriented spin centers, each containing
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FIG. 1. Sketches of magneto-optical excitation geometries
described in the text. Electric (E1) and magnetic (B1) field
components of the mw/THz radiation are depicted by red
and green oscillating lines, respectively. k (yellow arrow) de-
notes the propagation direction of the radiation. The static
magnetic field B0 is indicated by the gray arrow. Magnet
coils are shown as gray tori. (a) EPR excitation of a sam-
ple (blue box) inside a mw resonator (pale yellow box with
black ceiling). The standing wave in the resonator ensures
maximum B1 and minimum E1 at the sample position. In
the present case B1 is aligned perpendicular to B0. (b) and
(c) depict travelling wave excitation in Voigt geometry (b),
where k⊥B0, and Faraday geometry (c), where k‖B0.

N coupled spins (electrons and/or nuclei) with arbitrary
anisotropic interactions. We then extend the treatment
to dilute powder samples, where isolated spin centers oc-
cur in a random uniform orientational distribution. Next,
we treat the special case of isolated electron spins with-
out fine or hyperfine interactions. All cases cover lin-
ear, circular, and unpolarized radiation. The associated
derivations are given in the supplemental material (SM).
Finally, we show data from an experiment that directly
determines the parities of magnetic states involved in an
EPR transition. This illustrates the utility of the newly
derived theory.

An EPR transition between two stationary states |a〉
and |b〉 of an isolated spin center is induced by the res-
onant interaction between the total magnetic dipole mo-
ment of the spins and the magnetic field component B1

of the mw radiation. Since the mw radiation is always a
weak perturbation to the spin center, the cw EPR line
intensity for the transition |a〉 → |b〉 is accurately de-
scribed by time-dependent perturbation theory (Fermi’s
Golden Rule [51]) and is given by

Iab = χ
B2

1

4

∣∣nT
1 〈b|µ̂|a〉

∣∣2 = χ
B2

1

4

∣∣nT
1 µ
∣∣2 = χ

B2
1

4
D. (1)

χ contains the population difference of the two states,
and, for field-swept spectra, the additional factor
(d(Eb − Ea)/dB0)−1 , which is the general form of the
Aasa-Vänng̊ard 1/g factor [52, 53]. B1 is the (maxi-
mal) amplitude of the oscillatory B1, and n1 is a vector
describing its direction. µ̂ is the total magnetic dipole

moment operator. For an isolated spin system with N
coupled spins, it is given by µ̂ =

∑N
q=1 σqµqgqŜq. For

electron spins, σq = −1 and µq is the Bohr magneton
µB. For nuclear spins, σq = +1 and µq is the nuclear

magneton µN. gq is the 3x3 g matrix and Ŝq is the spin
angular momentum operator of the qth spin.

The complex mtdm vector µ is the matrix element of
the magnetic dipole moment operator for the transition,
µ = 〈b|µ̂|a〉. µ depends on the type of transition. In
the simplest case, for a single-quantum transition in an
isotropic spin system, µ is complex and perpendicular to
B0 and describes a rotation around the external mag-
netic field. For a zero-quantum transition in an isotropic
system, µ is real and parallel to B0. µ is unique within
an arbitrary complex phase factor.

A few vectors are needed to describe the experimen-
tal excitation geometry (Fig. 1). In EPR experiments
usually a static magnetic field B0 is applied, hence its
direction n0 = B0/|B0|, is needed. For resonator and
beam EPR experiments using linear polarization, n1

is required. The two limiting cases are perpendicular
(n1 ⊥ n0) and parallel (n1‖n0) mode. For beam ex-
periments with unpolarized and circularly polarized ra-
diation, the propagation direction nk = k/|k|, with the
wave vector k, is required. Two limiting cases are the
Voigt geometry with nk⊥n0, and the Faraday geometry
with nk||n0 (Fig. 1(b) and 1(c)).

Together with µ, the excitation geometry and the po-
larization determine the form of D in Eq. (1). For aligned
spin centers in a single orientation, it is

Ds
lin =

∣∣nT
1 µ
∣∣2 , (2a)

Ds
un =

1

2

(
|µ|2 −

∣∣nT
kµ
∣∣2) , (2b)

Ds
± = 2Ds

un ± 2nT
k (Imµ×Reµ) , (2c)

for linear polarized (Ds
lin), unpolarized (Ds

un), and cir-
cular polarized light (Ds

±). Ds
lin contains the projection

of µ onto n1, whereas Ds
un contains the projection of

µ onto the plane perpendicular to nk. The ± in Ds
±

denotes right- and left-handed circular polarization, re-
spectively. Ds

± contains the unpolarized expression and
an additional cross product term. If µ is complex, the
cross product represents the rotation axis for the rotation
described by µ. If this rotation axis is perpendicular to
nk, then left- and right-hand polarization give identical
intensities. The cross product is independent of the over-
all phase of µ.

For disordered systems such as powders and glasses,
the above expressions can be integrated. The resonance
positions (frequencies and fields) of a spin center are gen-
erally anisotropic and are determined by the center’s ori-
entation relative to n0. Centers with identical orienta-
tion relative to n0, but different orientation relative to
n1, have identical resonance positions, but differ in their
line intensities. The integrals of the general expressions
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from Eq. (2) over this subset of spin centers give

Dpow
lin =

1

2

[(
1− ξ21

)
|µ|2 +

(
3ξ21 − 1

) ∣∣nT
0 µ
∣∣2] , (3a)

Dpow
un =

1

4

[(
1 + ξ2k

)
|µ|2 −

(
3ξ2k − 1

) ∣∣nT
0 µ
∣∣2] , (3b)

Dpow
± = 2Dpow

un ± 2ξkn
T
0 (Imµ×Reµ) , (3c)

with ξ1 = nT
1 n0 and ξk = nT

kn0. These expressions sim-
plify for several common cases. For linear polarization,
perpendicular (n1⊥n0) and parallel (n1||n0) modes give

Dpow
lin,⊥ =

1

2

(
|µ|2 −

∣∣nT
0 µ
∣∣2) and Dpow

lin,|| =
∣∣nT

0 µ
∣∣2 .

Since both expressions cannot be zero simultaneously un-
less µ is zero, we see that any transition with a finite
mtdm will give intensity in at least one of the two modes.

For unpolarized radiation we can distiguish between
nk⊥n0 (Voigt geometry) (see also [18, 54]), and nk||n0

(Faraday geometry), where we obtain

Dpow
un,V =

1

4

(
|µ|2 +

∣∣nT
0 µ
∣∣2) , Dpow

un,F =
1

2

(
|µ|2 −

∣∣nT
0 µ
∣∣2) .

Dpow
un,F is identical to Dpow

lin,⊥ and Ds
un,F. For Voigt geome-

try, Dpow
+ = Dpow

− as a result of the powder integration,
therefore right- and left-handed circular polarization give
the same line intensities, independent of the particular
transition or the internal structure of the spin center.

For the case of an isotropic spin system, Eqs. (2) and
Eqs. (3) are equivalent. In this case, µ is either perpen-
dicular or parallel to n0.

For isolated electron spins in the absence of any inter-
action except the electron Zeeman interaction, the mtdm
for an allowed transition |mS〉 → |mS + 1〉 can be calcu-
lated analytically by using a frame (i, j,u) where u is
the quantization axis, u = gTn0/g with g =

∣∣gTn0

∣∣.
The frame is obtained by the Bleaney-Bir transforma-
tion [55, 56]. In this frame, the mdtm is given, within
an arbitary phase factor, by µ = cg(i − ij), with
c = −µB

√
S(S + 1)−mS(mS + 1)/2. For a single ori-

entation, we find [57]:

D̃s
lin = c2Λ(n1) = c2Γ (n1), (4a)

D̃s
un =

1

2
c2
[
tr(ggT)− |gu|2 − Γ (nk)

]
, (4b)

D̃s
± = 2D̃s

un ± 2 c2ξk det(g)/g, (4c)

with Γ (v) =
∣∣det(g)g−1 (v × n0) /g

∣∣2 and

Λ(v) =
∣∣(gTn1

)
× u

∣∣2. These expressions depend
only on u, and not on i or j. (The diacritic tilde is
used to distinguish the expressions for this special case
from the general ones.) D̃s

lin = c2Λ(n1) was first derived

by Kneubühl [21]. D̃s
lin expands to other previously

published expressions [23, 24, 58] and simplifies for
diagonal g [22, 59]. Bleaney’s original expression [20] is
a very special case where n1 is limited to a symmetry

plane of the eigenframe of an axial g tensor. D̃s
± was

previously derived for Faraday geometry [25].

For linear polarization, the dependence of the line in-
tensity on the relative orientation between n1 and n0

is evident from Γ (n1): maximal for n1⊥n0 and zero
for n1||n0. In the special case, the rotation axis of
the rotation described by µ is along n0 (without re-
strictions on g), hence in Voigt geometry D̃s

+ = D̃s
−.

Both left- and right-handed circular polarization give
the same transition intensity. In the limiting case of
an isotropic g matrix (g = giso1) in Faraday geometry,
we get D̃s

±,F = 2c2g2iso(1± 1), and only one handedness
leads to non-zero intensity.

For powders of isolated spins, D̃ is

D̃pow
lin =

1

2
c2
(
1− ξ21

) [
tr(ggT)− |gu|2

]
, (5a)

D̃pow
un =

1

4
c2
(
1 + ξ2k

) [
tr(ggT)− |gu|2

]
, (5b)

D̃pow
± = 2D̃pow

un ± 2 c2ξ2k det(g)/g. (5c)

Special cases of D̃pow
lin and n1 ⊥ n0 are known for general

and diagonal g tensors [23, 52, 58, 59] and spelled out into
polar coordinates [20, 22, 53, 60].

Eqs. (4) and (5) are fully analytical and do not re-
quire numerical matrix diagonalization. They apply only
in the absence of fine interactions and interactions with
other spins or nuclei. More complicated spin systems are
described by the more general expressions from Eqs. (2)
and (3). These require matrix diagonalization to com-
pute |a〉 and |b〉, needed to calculate µ. Although it is
customary to define a z axis alongB0 and an x axis along
B1 (for linear polarized mw radiation with B1⊥B0), no
such axis definitions are used here. All expressions are
representation independent. The new expressions are im-
plemented in the EPR simulation software EasySpin [19].

Next, we validate the new theory experimentally and
show that it can be used to extract new information
about quantum systems from EPR data. In a beam EPR
experiment, we measured transition intensities of high-
spin FeIII ions (spin 5/2) in a powder sample of hemin as
a function of the polarization angle α between the static
magnetic field and the magnetic field component of the
radiation. Experiments were conducted at the Frequency
Domain Fourier Transform THz-EPR setup at BESSY II
[33]. The high frequency/high field EPR data were ob-
tained in Voigt geometry with a beam of broad-band un-
polarized radiation that excited ground-state EPR tran-
sitions at 7.5 T and 2 K in the frequency range between
400 GHz and 1200 GHz. Detection was achieved with
a broad-band superfluid He cooled bolometer equipped
with a wire grid in front of the detector. Further exper-
imental details are given in the SM. During the experi-
ment, the wire grid, which served as polarization selec-
tor, was rotated in steps from n1||n0 (α = 0◦) to n1⊥n0

(α = 90◦).
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FIG. 2. Relative EPR absorption of high-spin FeIII (S =
5/2) in hemin at 458 GHz (black circles) and 845 GHz (red
triangles) plotted vs. the polarization angle α, which was in
the used excitation geometry the angle between n0 and n1.
Simulated relative EPR absorptions are plotted as black solid
(458 GHz) and red dashed (845 GHz) lines, respectively. The
inset depicts the calculated spin energies normalized to the
ground state level as function of the magnetic field applied
perpendicular to the hard axis of hemin. The black and red
arrows mark the transitions observed at 458 GHz and 845
GHz, respectively.

EPR transitions were observed at 458 GHz and 845
GHz. The two lines result from hemins oriented such
that the external magnetic field is perpendicular to the
molecular hard axis. Other orientations give rise to lines
of much smaller intensity at other frequencies. As shown
in Fig. 2, the two lines have opposite polarization de-
pendence: The line intensity at 458 GHz increases with
increasing α while that of the 845 GHz line decreases.
Fig. 2 shows theoretical intensities based on Eq. (3a).
They fit the experimental data well.

The EPR line at 458 GHz corresponds to a transition
from the ground state to the first excited state (see in-
set in Fig. 2), with opposite parity [61]. For this tran-
sition, the mtdm is complex, perpendicular to n0 and
has odd parity. The line intensity is proportional to
(1− ξ21)|µ|2 = |µ|2 sin2α (see Eq.(3a)). On the other
hand, the 845 GHz line corresponds to a transition from
the ground state to the second excited state, which has
the same parity as the ground state. µ is real, parallel to
n0, and of even parity. The transition rate is proportional
to ξ21 |µ|2 = |µ|2 cos2α. The polarization dependence is
reversed.

This EPR linear dichroism experiment shows that the
polarization dependence of EPR line intensities can be
used to determine parities of the states involved in EPR
transitions. This is valuable structural information es-
pecially for more complicated spin centers like molecular
nanomagnets, where the parity determines quantum tun-
neling rates [62–65]. The experiment presented here was

performed on a unique very-high-frequency EPR setup.
However, the general theory outlined here might inspire
similar experiments at lower frequencies, exploring eas-
ily rotatable microresonators [66], flexible and twistable
waveguides, rotatable magnets, or vector magnets.

In conclusion, we derived novel general and compact
closed-form expressions for calculating magnetic transi-
tion dipole moments and transition rates in solid-state
EPR experiments on crystals and disordered materials.
The expressions are valid for arbitrary spin centers and
arbitrary excitation geometries. They cover resonator
setups and beam experiments with unpolarized excita-
tion, linear polarization and circular polarization. Fur-
thermore, they are independent of the choice of the ref-
erence frame and do not involve Euler angles. Specifi-
cation of the vectors n0, n1 or nk, and µ is sufficient.
The derivations show that the concept of magnetic transi-
tion dipole moment (both the operator and its transition
matrix element) is useful for the description of general
EPR experiments. With this new theory in hand, EPR
spectra from experimental setups with non-standard ge-
ometries will give access to previously inaccessible in-
formation contained in line intensities and line shapes.
This will have impact on high-field EPR and frequency-
domain EPR, as well as on EPR experiments involving
resonant microstructures with inhomogeneous fields and
spatially varying excitation geometries.
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