Numerical characterization of symmetry properties for
photonic crystals with hexagonal lattice

Carlo Barth?, Jiirgen PTObSta, Sven Herrmannb, Martin Hammersehmidtb, and Christiane
Becker?

“Helmholtz-Zentrum Berlin fiir Materialien und Energie, Kekuléstr. 5, 12489 Berlin, Germany
bZuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

ABSTRACT

We present a numerical method to characterize the symmetry properties of photonic crystal (PhC) modes based
on field distributions, which themselves can be obtained numerically. These properties can be used to forecast
specific features of the optical response of such systems, e.g. which modes are allowed to couple to external
radiation fields. We use 2D PhCs with a hexagonal lattice of holes in dielectric as an example and apply
our technique to reproduce results from analytical considerations. Further, the method is extended to fully
vectorial problems in view of 3D PhCs and PhC slabs, its functionality is demonstrated using test cases and,
finally, we provide an efficient implementation. The technique can thus readily be applied to output data of all
band structure computation methods or even be embedded — gaining additional information about the mode
symmetry.
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1. INTRODUCTION

Specific modes in photonic crystal (PhC) slabs couple to the external light field and can generate largely enhanced
electromagnetic fields close to the PhC surface.!'? These so-called leaky modes can be excited from external
sources and may thus be used to influence the fluorescence properties of surface-near emitters such as quantum
dots® or molecules.” Band structure computations provide not only resonance frequencies but also additional
information about the spatial distribution of enhanced fields and symmetry properties. When trying to under-
stand the optical response of PhCs by means of the photonic band structure, the symmetry of the eigenmodes
cannot be neglected. E.g. for PhC slabs with 2D symmetry, modes exist which cannot be excited by external
plane waves although they lie above the so-called light cone.?¢ This restriction is only caused by a mismatch of
symmetry” and it is thus not sufficient to calculate the photonic band structure in view of the mode frequencies
and polarizations. Moreover, if the contrast in the refractive indices of the involved materials is large, it is not
possible to estimate the mode frequencies from comparison to a plane-wave case or an averaged slab, making
a numerical characterization of the symmetry properties indispensable. This is because perturbation theory
is no longer applicable in such cases and the frequency order of the modes can change. However, the type of
symmetry and hence the way in which the characterization has to be carried out strongly depends on the system
geometry and can in consequence not be generalized. For this reason, automatic symmetry characterization is
not implemented in any of the widely used band structure computation tools.

In this study we develop a numerical technique for automatic symmetry characterization which can easily
be adapted to different system geometries and actually apply it to the case of hexagonal lattice PhCs. We
give a brief synopsis of the mathematics and physics involved for this special case and show that the method
gives accurate results for scalar and vectorial problems. Finally, we list our efficient implementation using the
Python-language.
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2. THEORY AND METHODS
2.1 Symmetry operations and point groups

From the wide field of group theory, we only consider a very limited part and may restrict mathematical rigor
for simplicity. A point group P, for our purposes, is a set of symmetry operations R;

P:{R07Rl,~'~7Rn}7 neN, (1)

which has a group structure with composition as group operation, i.e. is closed under composition. The compo-
sition is associative and each operation has an inverse. We denote the group operations multiplicatively. Each
operation R can be represented by an orthogonal matrix which we denote by R. PhCs are systems with a spatially
periodic permittivity e(r). This periodicity causes the system to be invariant under certain symmetry operations
and the totality of these operations determines its point group. Conventional notations of these groups and their
properties can be found in appropriate text books.®?

A point of great importance is the action of a symmetry operation R on scalar fields f: S — R for § C R"
and vector fields F: S — R™ for S C R™. We can evaluate the action of R on a scalar field by evaluating the
field on the spatial coordinates transformed by the inverse operation as expressed by the following commutative
diagrams.

[ N

x [ Rf(x) = (R7'r). (2)

R

In contrast, the action of R on a vector field can be evaluated by

Bt @
Fl lRF RF(x) = RF (R'r), 3)
RTL R 3 R’IL
i.e. by evaluating the vector field on the inversely transformed spatial coordinates and subsequently transforming

the resulting field vector. These general considerations will be of importance when implementing the technique
in later sections.

2.2 Symmetry of photonic crystals with hexagonal lattices
2.2.1 The Cg, point group

From now on, we restrict our study to 2D PhCs and PhC slabs with a hexagonal lattice of holes. A 2D PhC
is defined as a dielectric material which is periodic in the zy-plane and with infinite extension to the direction
normal to the lattice plane, i.e. the z-direction. A PhC slab is a dielectric membrane which is periodic in the
zy-plane and thin in z-direction and may also have a substrate and/or superstrate. The Brillouin zone of such
systems is shown in Fig. 1(a). The dielectric constant of all of the mentioned systems exhibits at least the
symmetry of the Cg, point group, described by the symmetry operations
Cop = {E,CG,Cgl,Cg,C;l,Cg,ax,aé,og,ay,aé,ag . (4)
Here, E is the identity operation, while operations named C7* denote rotations of 27wm/n around the origin, and
operations named o, /, denote mirror reflections on the z/y-planes (and conjugate reflections). All rotations and
reflections are illustrated in Fig. 1(b) by the blue and red operations, respectively. Some of these operations are
conjugate, i.e. they are interchangeable by transforming the coordinate system by valid symmetry operations.
These redundant operations (semi-transparent in Fig. 1(b)) do not need to be considered and we can rewrite
Eq. (1) as
(/'611 :{E,206,203,C»‘2,30I,30y}, (5)
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Figure 1: Symmetry properties of the hexagonal lattice (freely adapted from?”). (a) First Brillouin zone and
irreducible Brillouin zone (green) with high symmetry points T', M, and K, as well as named intermediate points
T and ¥ (all points on each of the segments). (b) Symmetry operations. Rotations are shown in blue, while
mirror flips are shown in red. Operations which are conjugate to other operations appear semi-transparent and
with dashed lines.

where the factor in front of the operations marks the number of conjugate operations in the corresponding class.
In case of a photonic crystal slab with cylindrical holes and identical substrate and superstrate, e.g. surrounded
by air, we find an even higher symmetry because of the mirror symmetry regarding the zy-plane. The point
group is called Dgj,, which is the direct product Cg, x O and will not be covered in more detail.

2.2.2 Characters y and irreducible representations 7

The photonic band structure of a PhC is the totality of all solutions Ey,,, or Hy,, of the Maxwell equations for
the system with the band index n and the wave vector k. The wave vector can be regarded as the position inside
the irreducible Brillouin zone and the photonic band structure is usually solved along the outline of this zone,
i.e. along the connections between the high symmetry points marked in Fig. 1(a). Each solution is a so-called
irreducible representation I of its point group Py and we list the point groups for the specific wave vectors here

Pr = Céu,
Pr =A{F,2Cs,30,} = Cs,,
Pr = {E,C2,0y,0,} = Cay, (6)

PT == {E70y} = Clh7
Ps ={E,0.} = Cip.

The point of the highest symmetry is thus the I'-point, exhibiting the same symmetry as the system itself. The
Csy point group exhibits six irreducible representations, labeled A;, As, By, Ba, F; and Es. These are the
eigenfunctions of the symmetry operations R, which themselves commute with the operators that describe the
physical system.”!? Hence, any eigenfunction Ey ,, or Hy ,, of the Maxwell equations itself should be attributed
to one of these irreducible representations. The spatial symmetry of an irreducible representation is expressed
by its character x respective a symmetry operation R, which is defined by

Rfz(r) = xz(R)fz (r), (7)

for an irreducible representation fr, in the scalar case. A similar relation applies for the vectorial case.” The
characters of the irreducible representations for the (s, point group are listed in Tab. 1. In group theory,
the irreducible representations are usually given in an appropriate (in general non-Cartesian) basis, which has



Table 1: Character table of the Cg, point group.

Cev E 2Cg(z) 2Cs(z) Ca(z) 3oy 3ok

A+l +1 +1 +1 41 41
A, +1 +1 +1 $1 =1 =l
B; +1 =] +1 =] 41 =i
B, +1 = | +1 o R S |
E: +2 +1 ~1 —~2 0 0
E; +2 —1 ~1 +2 0 0

the advantage that the dimensionality of the transformation matrices is irreducible. In this basis, the absolute
values of the characters are direct implications of the matrix-dimensionality. The A- and B-representations are
one-dimensional, while the E-representations are two-dimensional and can thus also take values of +2.

2.2.3 Degenerate modes

A special case occurs for degenerate modes, i.e. modes with identical frequency and polarization. The point
groups which are of interest for hexagonal PhCs (Eq. (6)) only exhibit irreducible representations labeled by
A, B and E. Non-degenerate modes are always of A- or B-type, while degenerate modes are of E-type — a
consequence of their matrix-dimensionality as stated above. When considered independently, the field solutions
of the degenerate modes do not necessarily exhibit a valid symmetry of the corresponding point group. However,
any linear combination of degenerate eigenfunctions is an eigenfunction as well and a linear combination exists
which corresponds to an irreducible representation. In our case, this linear combination is always of E-type.

2.3 Numerical calculation of characters x for the Cs, point group
2.3.1 General algorithm

To numerically determine the irreducible representation f7 of a mode, the characters x; for all symmetry opera-
tions R; of the point group need to be calculated. The irreducible representation is then given from comparison
with Tab. 1. We need to distinguish the 2D (scalar) and the 3D (vectorial) cases. When dealing with 2D
problems, we only look at a single component of the electric or magnetic field, respectively, since the Maxwell
equations decouple into two independent sets for TE and TM polarization.!! These are scalar fields f(r) and
can be treated by Eq. (2). With 3D PhCs and PhC slabs, we deal with the complete vectorial field since a
decoupling of the Maxwell equations is no longer present, i.e. using Eq. (3).

In the 2D case, we solve the photonic band structure for the TE and TM polarizations separately. It is
sufficient to consider the z-component of the magnetic field for TE, and the electric field for TM, respectively.
Since the calculation is carried out for a 2D geometry, we end with a field of dimensionality N, x IV, where N is
the number of points in the respective direction. In the 3D case, all components of either the E- or the H-field
need to be considered and we have a 3D-space, resulting in a field of dimensionality N, x N, x N, x 3. For the
hexagonal lattice the computational domain is usually a hexagon in 2D and a prism with a hexagonal base in
3D. It is crucial that we consider the field only in this space for our numerical approach. If the field export is
on a rectangular grid, the data needs to be restricted to the computational domain. The algorithm can then be
described by the following steps.

1. Set up an interpolator for each of the necessary components of the field F to be able to evaluate it at any
spatial coordinate inside the computational domain.

2. For each of the symmetry operations R;, calculate transformed coordinates r; by applying the inverse of
the transformation matrix R; ' to the initial coordinates.

3. Evaluate the field F at the new coordinates r; using the interpolator(s), yielding F; ;.

(4. Only in the 3D-case: apply the transformation matrix to the field, i.e. calculate RiFi,t.)



5. Calculate the normalized covariance matrix C"°'™ of the initial and the transformed fields to find the
characters x(R;).

Detailed explanations for the important steps will be given in the next sections. We list here the 3D matrices R
which correspond to the operations of the Cg, point group. In the 2D case, the last column and row are omitted.

y cos(2rm/n) —sin(2rm/n) 0 +1 0 0
Cy'= | sin(2mrm/n)  cos(2em/n) 0 |, Ty = 0 F1 0 (8)
0 0 1 0 0 1

2.3.2 Evaluation of field values

The evaluation of field values necessitated by Eqgs. (2) and (3) can enforce to calculate field values on spatial
coordinates which are not included in the initial field, in the general case. For that reason, we included the
interpolation step in the general algorithm. However, for some of the transformations, e.g. mirror reflections
and rotations by multiples of 90°, there are no such new coordinates and an interpolation is unnecessary. If an
appropriate basis is chosen for the simulation it can even be completely omitted. That way, the algorithm can
be optimized to a great extent for specific geometries.

However, to keep the algorithm general we will no longer concentrate on these kinds of optimizations and
use the interpolation method instead. The interpolation routine influences the accuracy of the solution, but
also the computational costs. There is a trade-off with the number of exported field values N, since a larger
N gives a higher accuracy but slows down the evaluation of the interpolator significantly. Using a nearest-
neighbor interpolation is fast, but can give slightly worse results for transformations which introduce new spatial
coordinates, as stated above. See Sec. 3.2 for more details and a convergence study.

2.3.3 Calculation of characters x using covariance

As can be seen from Eq. 7, the characters y can be determined by comparing the initial and the transformed fields,
which can be done using the normalized covariance matrix C"°™ . Efficient implementations of this method are
present in most programming languages, including MATLAB and Python. The entries CiP™ of the normalized
covariance matrix, which are also known as the Pearson product-moment correlation coefficients,'? state the
linear correlation between two variables and can take values between +1 and —1. It is thus useful to identify
if a field is identical to its transformed field (CgP™ = CP§™ =~ +1) or if it is flipped (CF™ = CJg™ ~ —1).
Degenerate modes do note exhibit all symmetries in general, so that values in between can occur. We will show
that these values are suitable for the calculation of the actual character as well in Sec. 3.1. We note that the
correlation matrix is not independent of the choice of conjugate mirror operations, but it will be shown as well
that it is non-relevant for the resulting character in the end.

3. RESULTS
3.1 Scalar case: characters of modes on the I'-point of 2D hexagonal PhCs

To demonstrate our approach for the scalar case we calculated the characters for a 2D PhC with hexagonal lattice
at the I' point. The system is described in chapter 3 of the book Optical Properties of Photonic Crystals by K.
Sakoda,” where the characters are also examined by analytical considerations and are used here as a reference.
The radius of the air holes is 7 = 0.42a with lattice constant a and the relative permittivity of the dielectric is
€ = 2.72. We used the open-source software package MIT Photonic-Bands (MPB!3) to calculate the lowest 8
bands with a resolution of 1024 for the TE and TM polarization, respectively. Depending on the polarization,
we exported the H- or E-field on a rectangular grid of size 256 x 222 for each band. When restricting the points
to those lying inside the hexagon, there are 42392 of the initial 56832 points left for the analysis. We further
used a linear interpolation routine for the evaluation of the fields on transformed coordinates. These parameters
assure a minimal relative deviation as will be shown in Sec. 3.2.

Figures 4 and 5 on pages 311 and 312 show the results of the initial field (column 1) for each band (rows)
inside the hexagonal area and the numerically transformed fields for all of the five non-trivial transformations



(columns 2-6) of the C§, point group. The resonance frequency w in dimensionless units is shown in each title
of column 1, while the calculated normalized covariance is shown in the title of the columns of the transformed
fields. We omit the indication of a color scale since the images use individual scales and absolute field values are
not of interest for the study.

For both polarizations, the lowest band corresponds to the trivial solution of either polarization. Especially for
the TM-case, the E, component is close to zero and causes problems in the calculation of the correlation matrix.
We work around this by returning a correlation of +1 if all field values are close to zero in the implementation.
These solutions hence correspond to the irreducible representation A;. For higher bands the algorithm works as
expected as can be seen by eye when looking at the field patterns.

For the degenerate modes, which can be identified by their almost matching frequency, one does not find
characters that can be matched to an irreducible representation with Tab. 1 at first glance. This is because for
degenerate bands their linear combinations are also eigenfunctions, but in general neither of them alone shows
a particular symmetry (see Sec. 2.2.3). We obtain the correct characters by adding the calculated correlation
coefficients for each of the degenerate couples. We attribute this behavior to the fact that the character x is the
trace of the transformation matrix of the 2D basis of the E-representation noted in Sec. 2.2, although further
research is necessary to verify this assumption.

The complete results for the determination of the irreducible representations are listed in Tab. 2. For the
TE-polarization in Tab. 2(a), we find an A; and a By mode as the energetically lowest solutions, followed by a
doubly degenerate E; and a doubly degenerate Fy. The next two solutions are both of A;-type again. Similar
conclusions apply to the TM-case listed in Tab. 2(b). The order of irreducible representations exactly matches
the ones provided in the reference.”

Table 2: Calculated characters x and irreducible representations (column irr. rep.) for the 2D PhC with r = 0.42a
and ¢, = 2.72 at the I'-point.

(a) TE-polarization (b) TM-polarization
wa/2mc 2Cs 2C3 Cp 30y, 30, irr. rep. wa/2mc 2Cs 2C3 Cy 30y 30, irr. rep.
0.00000 1 1 1 1 1 Ay 0.00000 1 1 1 1 1 A
0.91018 -1 1 -1 -1 1 B> 0.75677 -1 1 -1 -1 1 By
0.92392 1 -1 =2 0 0 Eq 0.83807 -1 -1 2 0 0 Es
0.92421 1 -1 =2 0 0 E, 0.83829 -1 -1 2 0 0 Es
0.96004 -1 -1 2 0 0 E, 0.98460 1 1 1 1 1 A
0.96024 -1 -1 2 0 0 Es 1.04620 1 -1 =2 0 0 E;
1.04902 1 1 il 1 1 Aq 1.04648 1 -1 =2 0 0 Ey
1.48156 1 1 1 1 1 Aq 1.38643 1 1 1 1 1 Ay

3.2 Convergence in relation to MPB resolution and interpolation routine

We study the convergence of our approach by calculating the normalized covariance for two different modes in
relation to the MPB resolution rypg. When increasing rypp the convergence of the MPB simulation improves
itself quadratically!'® and further the number of points of the output field increases — which both may affect the
convergence of the character calculation. We calculated the relative deviation from the expected character for
band 2 of the TE-polarization and band 5 of the TM-polarization when rotating around 7 /3 and 7, respectively
(see. Figs. 4 and 5). The results are shown in Fig. 2, both for linear (blue, solid) and nearest-neighbor interpo-
lation (green, dashed). We observe that for both interpolation methods the convergence is roughly proportional
to the square of the MPB resolution (note the doubly logarithmic scale), i.e. identical to the convergence of
MPB itself. For a rotation of 7, this rule is almost satisfied exactly and linear interpolation does not give any
advantage because the rotated spatial coordinates coincide with known coordinates. For an angle of 7/3 the
linear interpolation gives slightly better results, but anyway increasing the MPB resolution has a much stronger
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Figure 2: Relative deviation for the character calculation of two different modes as a function of MPB resolution
and interpolation method (doubly logarithmic scale). (left) A mode with character of —1 for a rotation of m/3.
(right) A more trivial mode with character of +1 for a rotation of 7.

effect. The interpolation seems to limit the accuracy for angles which are not multiples of /2 since we observe
a saturation effect in the left panel which is not present in the right one.

3.3 Vectorial case: characters of a test case field

The vectorial case is a generalization of the scalar case and is treated almost in the same way. We need three
interpolation steps — one for each component — and we need to transform the field itself after the evaluation as
described in Sec. 2.3. For easier visualization we demonstrate the process on a 2D test vector field, defined by

P = () ©)

The results for the numerical transformations of the Cg, point group are shown in Fig. 3. The field direction,
marked by arrows, is transformed as expected. The calculated correlations are provided in the title of each image
in columns 2-6. We observe that this particular field exhibits only the Cy symmetry, with a character of —1.

4. DISCUSSION AND CONCLUSION

The presented algorithm was able to reproduce the analytical reference results at the I' point using numerical
calculations in the 2D case. The extension to the vectorial case was demonstrated in brief using a test case.
Degenerate modes have been treated by adding the normalized covariances of each involved mode and we gained
the correct irreducible representations this way. Using the compatibility relations from group theory, we can even
forecast the symmetry of the bands at the ¥ and T points from these results without any additional numerical
effort.” For example, we know that a By mode at the I' point is transformed into a B mode when moving into
K-direction, but into an A mode when moving into M-direction. This is of great importance, since in contrast to
an A mode a B mode can not be excited by an external plane wave.'? Hence, this knowledge is indispensable for
the design of optical systems based on the photonic band structure if an interaction with external plane waves is
intended. This additional information can also be of use for band structure calculations as a verification of the
provided solutions. E.g. if spurious modes can be returned by the technique these could be identified by their
inconsistent symmetry properties. Also, when trying to trace a single band, its symmetry properties can be used
to distinguish it from different bands. In this case, the compatibility relations need to be considered as well.

We presented an all-numerical technique for the assignment of PhC modes to irreducible representations of
the corresponding point group. The technique exhibits no limitations in view of the applicability to different
PhC geometries. It can readily be applied to the results of any numerical band structure solver and hence give
additional information about the symmetry properties of photonic bands. This information can be of great
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Figure 3: Numerical field transformations of a test vector field. For each of the transformations of the Cg, point
group the transformed field is shown in columns 2-6, marked with the calculated correlation.

importance for the optical properties of each band, for example when studying transmission through a PhC
or the coupling of modes to external radiation fields.>»® In contrast to analytical considerations, there is no
limitation for the dielectric contrast or the frequency of the modes of interest. It may thus be of great value
for the characterization of complex systems such as 3D PhCs or PhC slabs with additional substrates and large
dielectric contrasts.

APPENDIX A. IMPLEMENTATION IN PYTHON

We list a minimal implementation of the algorithm using the Python-language for the 2D case. It can be applied
using the transformField-function if the field, the coordinates and the transformation matrices are available as
NumPy-arrays using the call

fieldMasked, transformedFields = transformField(coords, field, transMatrices)
The correlation can then be calculated by
compareFields(fieldMasked, transformedFields[i])
for each transformed field 7.
Listing 1: Minimal implementation of the algorithm for the symmetry characterization of modes (scalar case).

The function transformField is used to calculate the necessary transformations of the input field. The corre-
lation can then be calculated using the compareFields-function.

import numpy as np
import pandas as pd
from scipy import interpolate

def isInsideHexagon(x, y, d=2., x0=0., y0=0.):

dx = np.abs(x - x0)/d

dy = np.abs(y - y0)/d

a = 0.25 * np.sqrt(3.0)

return np.logical_not(np.logical_and(dy <= a, a*dx + 0.25xdy <= 0.5%a))

def interpolateField(points, values, method = ’linear’):

if method == ’nearest’:
return interpolate.NearestNDInterpolator (points, values)
elif method == ’linear’:



return interpolate.LinearNDInterpolator (points, values)

def applyTransformation(matrix, coordsFlat, interp, originalShape):

fror

matrix_inv = np.linalg.inv(matrix) # inverse transformation matrix

e

# transform the cartesian coordinates unsii the 1nverse matrix

coordsNew = matrix_inv.dot(np.ma.MaskedArray(coordsFlat))

# evaluate the field components on the new coordinates
fieldAtModCoords = interp(np.array(coordsNew).T)

# tansform the new field
Ftrans = fieldAtModCoords.
return Ftrans

1 g the igins trans

siormation

T.réshape(originalShape)

def transformField(coords, field, transformationMatrices,
interpMethod=’nearest’):

H# at e the n:

shape = field.shape

idxInHex = isInsideHexagon(coords[0], coords[1])

coordsMasked = [np.ma.masked_where(idxInHex, c¢) for c¢ in coords]
fieldMasked = np.ma.masked_where(idxInHex, field)

fieldmask_ = fieldMasked.mask # o101 th original ma

coordsFlat = [c.ravel() for ¢ in coordsMasked]

fieldFlat = fieldMasked.ravel ()

interp = interpolateField(np.ma.MaskedArray(coordsFlat).T,
fieldFlat,

method=interpMethod)

re L ' L ansi T
transformedFields = []
for tm in transformationMatrices:
Ftrans = applyTransformation(tm, coordsFlat, interp, shape)
Ftrans = np.ma.masked_array(Ftrans, mask=fieldmask_)
transformedFields.append (Ftrans)

return fieldMasked, transformedFields

def compareFields(originalField, transformedField):



Calculatec the normalized ariance of two

if np.isclose(originalField.compressed(), 0.).all():
return 1.

# input fields
df = pd.DataFrame({’in’: originalField.ravel(),
’out’:transformedField.ravel ()})

return df.corr().iat[0,1]
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Figure 4: Numerical field transformations for the TE-polarization. The initial field derived from an MPB
simulation is shown in column 1, marked with band index and resonance frequency w in dimensionless units.
The field is restricted to the hexagonal area, i.e. a unit cell. Numerically transformed fields for all of the five
transformations (columns 2-6) of the Cg, point group, marked with the calculated normalized covariance.



TM: E,-field and transformations
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Figure 5: Numerical field transformations for the TM-polarization. The initial field derived from an MPB
simulation is shown in column 1, marked with band index and resonance frequency w in dimensionless units.
The field is restricted to the hexagonal area, i.e. a unit cell. Numerically transformed fields for all of the five
transformations (columns 2-6) of the Cg, point group, marked with the calculated normalized covariance.




