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X-ray absorption spectroscopy at the L-edge of 3d transition metals provides

unique information on the local metal charge and spin states by directly probing

3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray

technique has been rarely used at synchrotron facilities for mechanistic studies of

metalloenzymes due to the difficulties of x-ray-induced sample damage and strong

background signals from light elements that can dominate the low metal signal.

Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a

novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We pre-

sent L-edge absorption spectra of inorganic high-valent Mn complexes (Mn

� 6–15 mmol/l) with no visible effects of radiation damage. We also present the
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first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in

Photosystem II (Mn< 1 mmol/l) at room temperature, measured under similar con-

ditions. Our approach opens new ways to study metalloenzymes under functional

conditions. VC 2017 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4986627]

I. INTRODUCTION

Many important redox-active metalloenzymes such as Photosystem II (PS II), hydroge-

nases, and nitrogenases employ 3d transition metals in their active sites, where they catalyze

multi-electron reactions in aqueous solution, at ambient temperature and pressure.1–3 While

these catalysts cannot simply be transferred into industrial processes, they provide unique infor-

mation on how to spatially and temporally control electron and proton flow and product/sub-

strate transport during chemical transformations.

To probe the chemistry of such biological and related inorganic catalytic sites, metal K-

edge spectroscopy (1s to 3d and np transitions) in the hard x-ray energy range has been widely

used, providing element-specific information on the electronic structure and the local coordina-

tion environment of the metals.4–9 In contrast, metal L-edge spectroscopy, which probes 2p !
3d transitions, has been rarely applied to biological systems despite several advantages. These

transitions are dipole-allowed, show greater sensitivity to the occupancy, spin state, and ligand

interactions of the metal 3d derived orbitals,10–12 and exhibit a smaller inherent spectral broad-

ening (due to longer core-hole lifetime), as compared to the metal K-edge.13 In fact, the field

of materials science has recognized these advantages, and L-edge spectroscopy of 3d transition

metals has provided important electronic structural information through x-ray absorption (XAS)

and emission spectroscopy (XES), as well as 2p ! 3d resonant inelastic x-ray scattering spec-

troscopy (RIXS).12,14–18 This difference between spectroscopy on materials and on biological

catalytic sites arises from several factors: (i) X-ray induced sample damage strongly limits spec-

troscopic information at soft x-ray energies, even at cryogenic temperatures.19–21 (ii) Biological

metalloprotein solution samples are comparably dilute and have metal concentrations mostly on

the order of 1 mmol/l (1 mM), which poses experimental challenges for discriminating the sig-

nal of the probed metal center over that of the dominant background due to absorption and fluo-

rescence signals by light elements such as C, N, and O in the protein and in the solvent.16,22

(iii) Soft x-rays strongly interact with matter and hence require a vacuum environment, which

dehydrates the samples and prevents catalytic turnover.23

In recent years, the development of x-ray free-electron laser (XFEL) sources has provided

x-ray pulses with high brilliance and durations in the femtosecond (fs) domain.24,25 This has

enabled the fast-emerging field of x-ray diffraction and x-ray spectroscopy of proteins in the

hard x-ray energy range under biologically functional conditions, while overcoming the limits

set by x-ray induced sample damage.7,26–30 In a similar manner, biological soft x-ray spectros-

copy can take advantage of XFELs to collect x-ray damage-free data at room temperature by

outrunning the sample damage with fs pulses if a suitable detection scheme is used. Such a

detection scheme needs to extract the La,b fluorescence signal (400–1000 eV) arising from the

dilute metal sites and separate it from the very strong background from Ka fluorescence

(277–525 eV), emitted by light elements in the sample (C, N, and O). This can be realized with

an energy discrimination scheme making use of the element-specific partial fluorescence yield

(PFY) detection.

Recently, we introduced a spectrometer for x-ray absorption spectroscopy with partial-

fluorescence yield detection (PFY-XAS) based on three reflective zone plates (RZPs).16 RZPs

have the potential for high photon efficiency due to their simultaneous dispersive and focusing

behavior, combined in a single optical element with a large acceptance (solid) angle. The dis-

persive behavior allows us to record different energies of the emitted fluorescence at different

positions on a 2D detector, while the focusing behavior allows the increasing S/N ratio of a
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selected emission energy and other emission energies are defocused. In the case of PFY-XAS

on the Mn L-edge, the RZPs have been optimized to separate the Mn La,b (3d ! 2p) fluores-

cence at �637 eV subsequent to Mn L-edge (2p ! 3d) absorption [Fig. 1(a)] from the O Ka-

edge fluorescence at 525 eV with a bandwidth of 20 eV (FWHM).31 In a previous proof of prin-

ciple experiment, using an ionic Mn model system in aqueous solution (Mn concentration,

�500 mM), we have demonstrated the viability of the concept for collecting PFY-XAS at an

XFEL source at physiological temperature and pressure.16,22 However, the detection of PFY-

XAS signals from 100 to 500 times more dilute metal centers in molecular inorganic catalysts

and metalloenzymes has hitherto proven elusive due to the insufficient signal-to-noise (S/N)

ratio.

In this study, we report Mn L-edge spectra of high-valent Mn high-spin complexes [Fig.

1(b)] in solution and at room temperature with metal concentrations on the order of 1 to

10 mM. The XFEL based work has become possible with the application of an improved RZP

spectrometer to collect the PFY signal from dilute samples. With the example of the water oxi-

dation catalyst (Mn4CaO5) in PS II solution [Fig. 1(c)], we show that L-edge spectroscopy of

dilute metal centers in metalloproteins under functional conditions is now within reach. PS II

catalyzes the water oxidation reaction in photosynthesis. Upon sequential absorption of visible

photons, it advances in a series of intermediate states S0! S1! S2! S3! S4 and accumu-

lates four oxidizing equivalents (unit charges) in the Mn4CaO5 cluster.1,32 We interpret Mn L-

edge spectra of the Mn4CaO5 cluster in PS II in the dark resting state and in an illuminated

state by comparing them to experimental spectra of structurally well-characterized Mn model

complexes,33,34 measured under similar conditions.

II. RESULTS AND DISCUSSION

A. PFY-XAS on dilute transition metals using a reflection zone plate spectrometer

Our focus here is to probe dilute solution samples at room temperature, provided by liquid

sample injection systems35,36 which avoid dehydration and freezing of the samples in the high-

vacuum environment required for soft X-ray spectroscopy. Probing the sample in solution at

room temperature is necessary for studying chemical reactions under functional conditions in

proteins and many molecular inorganic catalysts. The experimental setup at the Linac Coherent

Light Source (LCLS) XFEL (Stanford, USA) combines a liquid jet delivery system with an in-
situ visible pump and a RZP spectrometer for PFY-XAS detection as shown in Fig. 2(a). We

note that using a liquid-sample cell with an x-ray transmissive membrane as in Ref. 37 is not

suitable for the high-valent complexes studied here due to their high sensitivity to x-ray dam-

age. For dilute samples in solution with metal concentrations on the order of 1–10 mM, the

amount of the fluorescence signal from light elements in the sample solution creates a dominant

background signal. In our setup, an array of RZP optics achieves the element-specific detection

of the PFY signal and the separation from this background signal. Each RZP element disperses

the fluorescence photons by their photon energy in the �1st diffraction order and focuses the

PFY of the probed metal center, in our case the Mn La,b fluorescence, onto the detector plane.

The CCD detector simultaneously captures the Mn La,b signal together with the O Ka fluores-

cence and the total fluorescence yield (TFY) in the 0th order reflection from the RZPs.

Compared to our earlier proof-of-principle experiments with a 3 RZP array spectrometer,16 we

have improved the detection and alignment capabilities, enabling us to record the spectra pre-

sented in this paper. The improvements consist of an increased effective size of the RZP array

from 3 to 1522,31 and now 54 active RZP structures. Furthermore, we increased the solid angle

by using two instead of one CCD detector. The photon detection efficiency was increased by

�1.4 as compared to Ref. 16. Finally, a number of conceptual improvements were realized.

These include an improved separation of Mn and O fluorescence on the detector and lithograph-

ically made structures on the RZPs for fast and easy alignment of the spectrometer. We note

that the concept we describe here is applicable to other 3d transition metals by adapting the

optical properties of the RZP structures.
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FIG. 1. Probing scheme and local structure of the Mn sites investigated in this work with sample names and assigned oxida-

tion states of Mn. (a) Scheme of Mn L-edge absorption spectroscopy with dominating one-electron transitions for absorption

and fluorescence at the Mn L and O K-edges. (left) Partial fluorescence yield (PFY) x-ray absorption spectroscopy (PFY-

XAS) at the Mn L-edge corresponds to detecting the Mn La,b fluorescence signal (Mn 3d! 2p transitions) as a function of

incident photon energy across the Mn L3,2 absorption edges (resonant Mn 2p! 3d transitions). Spin-orbit interactions in the

Mn 2p shell split the absorption spectrum into L3 and L2 edges. (right) The concurrent O Ka fluorescence (O 2p! 1 s transi-

tions) resulting from 1 s ionization of O in the sample (non-resonant O 1 s! continuum transitions) is also indicated. (b) Four

inorganic mono- and multinuclear high-spin Mn complexes with variable oxidation states and molecular structures. (c) The

photosystem II protein1 and the Mn4CaO5 cluster (inset adapted from Ref. 30 for the protein in the dark resting S1 state).
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To record PFY-XAS spectra with this setup, we use the beam line monochromator to step-

wise select a narrow-bandwidth (0.4–0.6 eV) slice of incident photon energies out of the broad

SASE pulses (�4 eV) provided by the LCLS XFEL. At each step, we integrate the PFY and

TFY signals on the CCD image. The normalized PFY signal of Mn as a function of the incident

photon energy gives the PFY-XAS spectrum.16,38 The TFY signal in the 0th order reflection is

essential for an accurate normalization of the PFY intensity of the probed metal, and this signal

is directly proportional to the portion of the beamline flux hitting the sample. This approach is

particularly important for the low sample concentrations used in this study, where the contribu-

tion of Mn fluorescence to the total fluorescence signal is negligible.

An example spectrum of the L3 absorption edge of Mn2þ in aqueous solution, recorded

with this setup at the LCLS XFEL, is shown in Fig. 2(b). Each data point on the y-axis in

this figure is the integrated Mn La,b fluorescence signal in the area assigned on the CCD

images in Fig. 2(c). The “Off-peak” (top) and “On-peak” (bottom) panels of this figure show

the CCD images averaged over the data points below the absorption onset and in the Mn L3

peak region, respectively, as assigned in Fig. 2(b). The “On-peak” (bottom) panel illustrates

the spatial separation of the row of the focused Mn La,b fluorescence spots centered at

�637 eV from the O Ka fluorescence signals at �525 eV (stripe shaped signals) and from the

flat-top feature originating from the 0th order reflection. For illustration, a representative frac-

tion of CCD signals from 6 of 54 RZPs is shown. The comparison of CCD images, averaged

over the “Off-peak” and “On-peak” spectral regions of Mn L3, illustrates the concept of

PFY-XAS detection: The row of Mn La,b signal spots changes its intensity as a function of

the incident photon energy. The agreement of the Mn L3-edge spectrum of a Mn2þ
aq solution

sample measured here [Fig. 2(b)] with previously published data measured at a quasi-

continuous synchrotron source22 demonstrates the validity of our approach at the XFEL

source (see also supplementary material).

FIG. 2. Concept of the experimental design. (a) Setup for Mn L-edge PFY-XAS on dilute samples in solution with optical

pump lasers (green arrows, for illumination of the PS II sample) and femtosecond soft x-ray probe pulses (blue arrow) from

the Linac Coherent Light Source (LCLS) x-ray free-electron laser (XFEL), probing the liquid sample jet. For PXY-XAS on

the Mn L-edge, the incident photon energy is scanned stepwise with the x-ray monochromator of the soft x-ray beamline of

the LCLS XFEL. At each step, a reflective zone plate spectrometer separates the Mn La,b from the O Ka fluorescence in the

-1st diffraction order (and the total fluorescence signal in the 0th order reflection), which are all simultaneously detected

with a CCD camera. (b) Example of a Mn L3-edge PFY-XAS spectrum of a 500 mM Mn2þ
aq solution sample, which was

obtained with the (normalized) integrated Mn La,b fluorescence intensity on the CCD image in (c) as a function of the inci-

dent photon energy. (c) Comparison of the CCD images averaged over the “On-Peak” and “Off-Peak” data points assigned

in (b) with the same color scale (in photons/5 s).
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For biological samples, the concentration of the metal centers is often in the range of

1–10 mM. For example, in contrast to the readily distinguishable Mn La,b fluorescence signal of a

highly concentrated Mn2þ
aq complex in Fig. 2(c), the stoichiometric ratio of Mn:O in the PS II

solution amounts to 1:64000 with a Mn concentration of 0.8 mM. Our improved RZP spectrometer

enables us to separate the weak Mn La,b fluorescence from the overwhelming O Ka fluorescence.

Representative experimental detector signals from a PS II solution sample with a Mn concentration

of 0.8 mM are shown in Figs. 3(a) and 3(b) (top panels) where panel (b) depicts magnifications of

the Mn La,b fluorescence signal from the overall detector signal shown in panel (a). These images

show the signal of one CCD in the spectrometer, averaged over the FWHM spectral range of the

measured Mn L3-edge (639.4–644.8 eV, On-peak region). The CCD images (top panels) and the

sum projections (middle panels) in Fig. 3 exhibit a distinct Mn fluorescence peak with adjacent

strong O fluorescence intensity. This demonstrates the spatial or, equivalently, spectral separation

of the respective fluorescence signals. The total “On-Peak” count rates for two CCD chips were

�5 Mn La,b photons/s and �27 000 O Ka photons/s, as approximately expected from the Mn:O

ratio in the sample (see supplementary material). We find that the Mn spectral region on the CCD

also contains background intensity (see the middle panel in Fig. 3), which we attribute to two fac-

tors—to the tail of the O Ka fluorescence and to x-ray photons scattered from imperfections of the

optic surface. However, the prominent O Ka fluorescence intensity in the Mn spectral region on

the CCD is suppressed by a factor of approximately 300. This enables us to perform Mn L-edge

XAS on dilute biological samples such as PS II in solution. Differences corresponding to the “On-

Peak” minus the “Off-Peak” signal (i.e., with incident photon energies below 637.5 eV and hence

off the Mn L3 absorption edge) are also shown in Fig. 3 (bottom). They confirm that the peaks

around CCD column number 340 are in fact the Mn La,b fluorescence signal. We find a ratio of

approximately 1:1 for Mn:background signals.

For PFY-XAS, the Mn fluorescence signal was integrated, normalized by the total fluo-

rescence signal in the 0th order, and plotted as a function of the incident photon energy (see

Fig. 4).

FIG. 3. CCD signals of the PS II solution sample at room temperature (Mn concentration, 0.8 mM). (a) (top) Mn L3

“On-Peak” (639.4 eV< h�< 644.8 eV) average of a single CCD with the color code given in photons/second and (middle)

the corresponding projection to the x-axis. (bottom) Difference in the count rates averaged “On-Peak” minus “Off-Peak”

(h�< 637.5 eV). The Mn La,b fluorescence with �3 ph/s (shaded area) is focused to 4 � 4 pixel (220 lm) wide spots, which

are clearly separated from the dominant O Ka fluorescence. (b) Zoom into the panels of (a) with focus on the Mn La,b

region. Note that two available CCDs recorded a Mn La,b fluorescence signal of �5 ph/s, whereas the signal of one CCD is

shown here.
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B. Mn L-edge XAS of dilute molecular complexes in solution

For Mn L-edge XAS scans, the incident photon energy was scanned over the Mn L3 or Mn

L2,3 edges, in steps of 0.13 to 0.3 eV using the SXR beamline monochromator. The photon out-

put of the XFEL is also optimized for each energy step by slightly modulating the electron

beam parameters (Vernier scan) to obtain approximately equal incoming photon intensities on

the sample over the scan range. At each step, the spectrometer CCD was integrated for equal

time spans (5 to 17 s). The Mn La,b and the O Ka signals and the total fluorescence signal in

the 0th order reflection were integrated in rectangular regions of interest (ROIs) around the

individual Mn La,b signal spots for each scan step. Focusing the Mn La,b fluorescence signal

with the RZP optics essentially improves the S/N ratio of this signal for dilute biological sam-

ples. The incident x-ray flux, focus size, and intensity used for the data collection of each sam-

ple are listed in Table I. The choice of these parameters is discussed in Sec. II D and Sec. IV.

In Fig. 4, we show the Mn L3 main absorption spectra of one mononuclear and three multi-

nuclear inorganic Mn complexes with variable electronic and local molecular structures [Fig.

1(b)] (for experimental details including sample preparation, see Sec. IV and supplementary

material). Only for the “non-cubane oxidized” compound, the Mn L3-edge region is shown (see

Sec. IV D).

The data in Fig. 4 demonstrate that the Mn L3 peak in the spectra of the Mn3CaOx com-

plexes shifts to higher energies with the increasing formal oxidation state of Mn. These spectra

were measured at Mn concentrations of 15 mM (Mn(II)Mn(III)2CaO(OH), non-cubane,

reduced), 10.5 mM (Mn(III)3CaO(OH), non-cubane, oxidized), and 6 mM (Mn(IV)3CaO4, closed

FIG. 4. Mn L3,2-edge partial-fluorescence yield x-ray absorption spectra of PS II and inorganic high-spin model complexes

as measured in solution (see Fig. 1 for molecular structures). Top to bottom: 500 mM Mn2þ
aq solution [the Mn2þ

aq spec-

trum is the same as in Fig. 2(b)], three inorganic Mn3CaOx model complexes with Mn concentrations of 6–15 mM (struc-

tures are given in Fig. 1), and the Mn4CaO5 cluster in PS II with a Mn concentration of 0.8 mM measured for the S1 dark

resting state (green circles, black line) and an illuminated PS II sample (2 F, meaning that it was illuminated with two opti-

cal flashes) in an S3-enriched state (orange circles, red line). The solid lines for the PS II measurements are the original

data binned to energy regions of 0.8 eV.
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cubane). The absolute incident photon energy axis was calibrated with the Mn2þ
aq spectrum

(Fig. 4) with reference to the spectra published previously16 with an uncertainty of 50 meV.

The synthetic Mn3CaOx complexes structurally mimic the partial structure of the Mn4CaO5

cluster of PS II.

In a first approximation, we consider the energies for the L3 absorption maximum and find

that this energy shifts from 639.8 6 0.2 eV in Mn(II) to 641.6 6 0.2 eV in Mn(III)3 and to

643.1 6 0.2 eV in Mn(IV)3 (where the uncertainties are given by the size of one monochromator

step of 0.2 eV). In the Mn(II)Mn(III)2CaO(OH) sample with mixed Mn oxidation states, the

low-energy peak at 639.9 6 0.4 eV is assigned to the Mn(II) species, while the high-energy

peak at 641.3 6 0.4 eV corresponds to the Mn(III) species. In Fig. 5, we quantify these observa-

tions with a linear fit including all data of the inorganic complexes. We find that the L3 maxi-

mum shifts by 1.6 6 0.3 eV per assigned oxidation state of Mn. This is in good agreement with

findings based on simple mononuclear Mn complexes.14 This analysis, however, neglects the

multiplet structure in the spectra.10 A more detailed interpretation of our spectra will have to

await progress in ab-initio theoretical methods11,39–43 to correlate the multiplet structures with

valence electronic spin and charge densities of the systems.

C. Mn L-edge XAS of photosystem II

The fifth row of Fig. 4 shows the Mn L3 spectrum of the Mn4CaO5 cluster in PS II in the

dark stable (S1) state, collected at room temperature from a solution sample with a Mn concen-

tration of 0.8 mM. The spectrum was collected with the same setup and under similar condi-

tions as the three Mn3CaOx complexes. Several spectrum scans are averaged, with a total acqui-

sition time of 1.5 h for the entire spectrum or 1.3 min per data point in the spectrum. Due to the

low Mn concentration of 0.8 mM in the PS II solution samples, only the L3 part of the Mn L-

edge was scanned in order to compromise between spectrum statistics and scan time.

As observed in Fig. 4, the Mn L3 peak position in PS II is approximately centered between

that of the Mn(III)3CaO(OH) and the Mn(IV)3CaO4 complexes, which qualitatively confirms

the expected combination of Mn oxidation states (III,III,IV,IV) in the PS II S1 (dark resting)

state.1 This Mn(III)/Mn(IV) mixed oxidation state may also explain the comparably large width

of the Mn L3 feature of PS II; as the four Mn atoms in the Mn4CaO5 cluster have Mn(III)/

Mn(IV) mixed oxidation states and coordination geometry (six and five coordination sites with

bridging oxygen, terminal water, carboxylates, and histidine ligands), such differences likely

contribute to the broad Mn L3 spectrum of PS II. Moreover, one may speculate on possible

TABLE I. Samples, x-ray pulse parameters, and estimated influence of x-ray damage mechanisms. cMn is the Mn concen-

tration, Ep is the pulse energy on the sample, DEm is the monochromator bandwidth, sp is the pulse duration (FWHM), and

Focus (HxV) denotes the horizontal and vertical focus sizes (FWHM). ns, �s, and I s are the photon fluence, the energy flu-

ence, and the intensity averaged over the probed “skin volume,” i.e., attenuation length times x-ray focus size (FWHM).

They are related to the peak values via an averaging factor of cs¼0.456. Focus sizes with * were measured with a fluence

scan imprint method and others on a fluorescent YAG screen. Values with # are based on Ep determined from one gas mon-

itor detector (GMD), and all other values are averaged over two GMDs. Ds is the x-ray dose absorbed by the probed volume

on resonance per pulse. P
m

is the average fraction of sequential multi-photon absorption by a molecule with m Mn atoms,

and T NL is the average relative atomic transparency induced by stimulated emission.

Sample

cMn

(mM)

Ep

(lJ)

DEm

(eV)

sp

(fs)

Focus

(HxV) (lm2)

ns

(ph/Å2)

�s

(J/cm2)

I s

(TW/cm2)

Ds

(MGy) P
m

(%) T NL (%)

Mn2þ
aq 500 4.6 0.4 100 12 � 50* 0.30 0.31 2.9 4.0 1.8 6.5

Mn(II)Mn(III)2

CaO(OH)

15 9.4# 0.6 200 20 � 140 0.13# 0.13# 0.63# 1.7# 2.4# 0.048#

Mn(III)3CaO(OH) 10.5 4.6 0.4 100 12 � 60* 0.25 0.25 2.4 3.2 4.4 0.13

Mn(IV)3CaO4 6 4.6 0.4 100 12 � 60* 0.25 0.25 2.4 3.2 4.4 0.072

PS II (dark) 0.8 3.4 0.4 100 10 � 50* 0.27 0.27 2.6 3.4 6.3 0.010

PS II (2F) 0.8 4.0 0.4 100 10 � 50* 0.32 0.32 3.0 4.0 7.4 0.012
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spin-spin coupling effects within the Mn4CaO5 cluster or inhomogeneous broadening effects in

the cluster at room temperature, which may additionally broaden the spectrum.

A proof of principle for the experimental feasibility of probing PS II in the successive illu-

minated states with Mn L-edge XAS is shown in Fig. 4 (bottom row), where a Mn L3 spectrum

of the PS II 2 F (S3-enriched) sample is compared to that of the PS II S1 (dark resting) state.

Upon successive absorption of visible light photons, PS II advances from the dark stable S1 to

the S2 state and then to the S3 state, and it eventually evolves molecular oxygen when advanc-

ing from the S3 state to S0. Each intermediate state is associated with a change in the local

charge and spin distributions on the Mn4CaO5 catalytic site and hence the Mn oxidation states

and its geometry.1 Experimentally, the protein sample was advanced via a sequence of optical

pump laser flashes with well-controlled relative timing, while flowing through the delivery sys-

tem [green arrows in Fig. 2(a)] before the x-ray pulses probe the sample (see Sec. IV for

details). Thus, two flashes (2 F) enrich the PS II sample in the S3 intermediate state with a pop-

ulation efficiency of >60%.44 The acquisition time of the PS II 2 F spectrum amounts to 1.4 h

(1.9 min per data point).

Despite the low S/N ratio of the spectra of PS II, a relative shift of the Mn L3 main feature

to higher photon energies can be observed for the 2 F-state sample relative to the S1-state data.

This is consistent with the expected increase in the average Mn oxidation state from 3.5 in the

S1 state (�100% Mn(III)2Mn(IV)2CaO5) to an expected value between 3.8 and 3.9 for the PS II

2 F illuminated sample, enriched to �60% in the S3-state with the Mn(IV)4CaO5 configura-

tion.1,30 The spectral shift is clearly visible in the spectra of PS II in Fig. 4 and amounts to

approximately 0.5 eV with a peak position of 642.6 6 0.4 eV for PS II S1 and 643.1 6 0.4 eV

for PS II 2 F (where the size of the error bars is one bin width). These peak positions can now

be added to the data in Fig. 5 (square marks), and we find good agreement with the linear

increase of 1.6 eV per oxidation state as extracted from the inorganic complexes.

For future time-resolved experiments assessing different time points in the photocycle, bet-

ter spectral statistics for the PS II samples and progress in the theoretical interpretation11,39–43

will be essential, and such effort is underway.

D. Radiation Damage by intense soft x-ray pulses from XFELs

The possibility to collect spectra from undamaged protein samples at XFELs has been thor-

oughly demonstrated with x-ray spectroscopy7,27,45 and x-ray diffraction28–30,46–48 in the hard

x-ray regime. However, less experimental evidence has been found in the soft x-ray regime. To

FIG. 5. Mn L3-edge peak-maximum positions of the spectra shown in Fig. 4 versus formal oxidation states of Mn in the

inorganic compounds (the same color code as for the spectra in Fig. 4). The error bars reflect step sizes of 61 of the mono-

chromator scan. For comparison, the peak-maximum positions of the Mn L3-edge spectra for PS II in the S1 (dark) state

and the 2 F (illuminated) sample are shown in the expected average oxidation states (error bars of one bin width). Note that

the Mn(II)Mn(III)2CaO(OH) (non-cubane, reduced) Mn3CaOx complex and the PS II samples exhibit mixed oxidation

states (see main text), but only for the Mn3CaOx complex with two clearly separable Mn L3 peaks (see Fig. 4), two peak-

maximum positions are given. The gray shaded area reflects the uncertainty of the linear fit.
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ensure that the undamaged sample was probed, we carefully chose the experimental conditions,

as we outline in this section. Soft x-ray pulses from the LCLS with photon energies around

640 eV and a pulse duration of �100 fs were used for the current experiment. As we demon-

strate below, the fs duration of the x-ray pulses guarantees probing of the sample before (dose-

dependent) x-ray induced sample damage19–21 sets in. On the other hand, since the LCLS x-ray

pulses are very intense, they have the potential for undesired spectral effects due to sample

damage by sequential multiphoton absorption49,50 or x-ray optical nonlinear effects.51,52 We

have therefore applied experimental protocols, ensuring that these effects do not affect our

experimental spectrum (see also Sec. IV and supplementary material). A summary of the exper-

imental sample conditions, x-ray pulse parameters, and estimated influence of the damage

mechanisms is given in Table I.

The conventional notion of (dose-dependent) “x-ray damage” addresses the modification of

the probed local molecular and electronic structure in metalloproteins and high-valent metal

complexes by diffusive radicals and electrons created in the sample bulk after x-ray absorption.

It often prevents meaningful experiments of biological systems at synchrotrons even at cryo-

genic temperature. The classical damage threshold for protein crystallography at synchrotron

sources is estimated to be on the order of 30 MGy under cryogenic conditions and on the order

of 0.5 MGy at room temperature.53 The critical dose for x-ray damage to redox active metal

centers, however, was shown to be considerably smaller than the doses relevant to crystallogra-

phy.19 As we have shown above, the features of transition metal L-edge spectra are most sensi-

tive to the formal oxidation state of the probed transition metal. Therefore, the most apparent

effect of the diffusive (dose-dependent) x-ray induced sample damage to high-valent Mn com-

plexes in solution is observed by the occurrence of a reduced Mn(II) species in the spectrum.19

Similar observations have been made in Ref. 21 for other high-valent transition metal species,

which play a crucial role in other metalloenzymes. In Mn L-edge XAS, such damage would be

reflected by a comparably sharp peak at �640 eV (top row of Fig. 4) which is characteristic of

Mn(II). Apparently, neither the spectra of the Mn(III)3CaO(OH) and Mn(IV)3CaO4 samples nor

the spectrum of PS II contain any noticeable contribution of a Mn(II) species despite that the

dose (here “skin dose” Ds, see Sec. IV) absorbed by the probed sample volume with each x-ray

pulse largely exceeds 0.5 MGy (Table I). This shows that the samples as probed here with the

fs soft x-ray pulses from the LCLS XFEL are free from x-ray damage with this dose-dependent

diffusive mechanism even at room temperature. This is in agreement with what has been shown

as the “probe-before-destroy” concept for metalloproteins in the hard x-ray regime at the

LCLS.7,27

For the intense x-ray pulses provided by XFELs, on the other hand, we need to consider

sequential49 and non-sequential nonlinear x-ray optical effects50–52 and Coulomb explosion,54

which can potentially skew the observed spectrum in an unprecedented manner. The statistical

probability P for sequential multi-photon absorption by a Mn complex with m Mn atoms can

be denoted with Pm. We estimate it here using Poisson statistics (see Sec. IV and supplemen-

tary material for details) with the measured average photon densities on the sample (Table I)

and an absorption cross section r of 12 Mbarn for the Mn L3 resonance.61 For the model com-

plexes, we estimate the relative contribution of sequential multi-photon absorption to our spec-

tra Pm¼3 between 2% and 4%, and for the Mn4CaO5 cluster in PS II, we estimate Pm¼4 between

6% and 7%. These values can be seen as upper limit estimates, as they reflect the case of reso-

nant excitation on the maximum of the L3 resonance. The relative effect of nonlinear simulated

elastic forward scattering, as confirmed by the parameters given in Table I, is far below 1% for

the Mn3CaOx molecular complexes and the Mn4CaO5 cluster in PS II under our experimental

conditions. The agreement of our Mn2þ
aq spectrum with spectra of the same sample from a

synchrotron source22 (see supplementary material) confirms that we do not detect any notice-

able spectral distortions due to non-linear effects under our experimental conditions. If this hap-

pened, a reduction of the most intense Mn L3 peak signal in favor of stimulated x-ray emission

in the forward direction would be expected. Last, we note that the energy fluence used in our

experiment is �106 times lower than that in Ref. 54, and we can hence safely neglect the effect

of a Coulomb explosion.
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We therefore conclude that the room temperature solution spectra presented here were mea-

sured with negligible x-ray damage. The spectrum of the PS II solution sample in Fig. 4, in par-

ticular, represents, to the best of our knowledge, the first x-ray damage-free Mn L-edge absorp-

tion spectrum of PS II at room temperature. This demonstrates the feasibility of soft x-ray

absorption spectroscopy on dilute metalloprotein and inorganic molecular catalysts under func-

tional conditions at XFELs.

III. CONCLUSION

We herein demonstrate the feasibility of Mn L-edge XAS of dilute high-valent Mn complexes

and PS II protein samples in solution with femtosecond soft x-ray pulses from an XFEL. With this

method, we can directly probe changes in the unoccupied valence electronic structure concomitant

with structural changes and with variations of the valence spin and charge densities. All spectra

were measured at room temperature, which is essential for studying the local electronic structure of

catalytically active metal centers in (bio)chemical reactions under functioning conditions.

Our results show that under our experimental conditions, the samples were probed without

dose-dependent x-ray damage. We also confirm that contributions of non-linear effects such as

sequential multi-photon absorption and stimulated emission are negligible at the level of our

current experimental conditions and sensitivity. We thereby establish probe-before-destroy soft

x-ray absorption spectroscopy of biological samples at XFELs complementary to hard x-ray

spectroscopy and diffraction at XFELs. We furthermore set the benchmark for future theoretical

approaches to the valence electronic structure of the catalytic site in PS II and in other metallo-

proteins by reporting experimental L-edge spectra that need to be made accessible to theoretical

interpretation. Establishing the sensitivity of L-edge spectra of mono- and multinuclear Mn

complexes to the formal oxidation state, the spin state and the valence electronic structure by

comparing the experiment and theory are essential for characterizing the Mn-ligand bonds and

may enable unique insights into the O-O bond formation mechanism in the water splitting reac-

tion in PS II. We also note that our approach is transferable to a wide range of metalloproteins

and molecular inorganic catalysts with 3d transition metals in their catalytic sites and will allow

us to directly monitor changes in their electronic structure under catalytically functional condi-

tions in a time resolved manner. The current spectral quality for the PS II samples is limited by

the experimental statistics achieved herein. However, the quality of the spectrum for the closed

cubane complex, which has a Mn concentration only eight times higher than the PS II sample,

points out to what could be achieved with future experiments on dilute samples with longer

acquisition times and hence improved spectrum statistics, at existing XFELs. It is important to

note that considerably increasing the x-ray pulse energy beyond what was used in the current

study does not represent the best solution for improving the spectral quality due to the potential

onset of sequential multiphoton absorption and x-ray non-linear effects. Thus, higher repetition

rates of the XFEL pulses will greatly enhance the potential of the demonstrated approach. The

reported experiments on high-valent inorganic Mn complexes and PS II at room temperature, as

well as extensions of our approach to other metalloenzymes and related model compounds in

solution, will therefore tremendously benefit from next generation XFEL sources with higher

repetition rates such as the European XFEL and LCLS-II.

IV. MATERIALS/METHODS

A. Sample preparation and injection

Photosystem II (PS II) was extracted and purified from Thermosynechococcus elongatus using

the detergent n-dodecyl-b-D-maltoside (bDM)55 to a final protein concentration of 70 mg/ml. The

purified PS II was resuspended in 100 mM PIPES buffer solution at pH 7 with 5 mM CaCl2,

0.015% bDM, and 42% glycerol (w/v) to a final protein concentration of �70 mg/ml (¼7 mM

Chl¼ 0.8 mM Mn). The Mn(IV) 3CaO4 (closed cubane) model compound sample was prepared as

a solution of �2 mM LMn(IV)3CaO4(OAc)3(THF) (c(Mn)�6 mM), the Mn(III)3CaO(OH) (non-

cubane oxidized) model compound sample was prepared as a solution of 3.5 mM [LMn(III)3CaO
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(OH)(OAc)2(OTf)DME]�2OTf (c(Mn)�10.5 mM), and the Mn(II)Mn(III)2CaO(OH) (non-cubane

reduced) model compound sample was prepared as a solution of 5 mM [LMn(II)Mn(III)2CaO

(OH)(OAc)3]OTf (c(Mn)�15 mM). Each sample was synthesized as reported previously33,34 and

prepared in a 1:1 mixture of anhydrous N,N-dimethylformamide and anhydrous tetrahydrofuran. L

denotes thrice deprotonated 1,3,5-tris(2-di(20-pyridyl) hydroxymethylphenyl) benzene (see supple-

mentary material for further details). The 500 mM solution of solvated Mn2þ
aq was prepared from

MnCl2�4H2O in the 45% glycerol/water mixture (w/v). All samples were loaded into gas tight

Hamilton syringes mounted on a KD Scientific syringe pump.

An Electrospinning Microjet36 was used to inject the PS II samples, the Mn(II)Mn(III)2

CaO(OH) (non-cubane reduced) model compound sample, and the Mn2þ
aq solution samples into

the liquid jet endstation (LJE)56 at vacuum pressures of 10�4 to 10�3 mbar. The sample syringe

was connected to a silica capillary (ID 75 lm, OD 150 lm), coated with polyimide. A charging

union at a potential of 3 kV (UH-432, IDEX Health & Science) was inserted into the capillary

path, and the counter electrode �5 mm below the capillary exit was kept at potentials of �1 kV

to �3 kV. The flow rate in the range of 1–3 ll/min was monitored using a flow sensor (Sensirion

LG16–0150). For illumination of the PS II sample, three multimode fiber light guides were avail-

able, connected to the silica capillary 2, 4, and 6 mm above the x-ray probing region. With two

of these, the 2 F state of PS II was prepared with two pulsed laser beams (30 lJ, 100 ns, and

420 lm spot size each) from a frequency doubled Nd:YLF laser at 527 nm (Coherent Evolution)

and triggered such that each molecule in the specimen was illuminated once per flash (i.e., for a

flow rate of 3 ll/min at a rate of 24.1 Hz). In the present setup, the sample takes �180 ms

between the first and the second flash to complete the conversion of PS II from the S1 into the

1 F (S2-enriched) state, and between the second flash and the x-ray probe, the sample takes

�350 ms to complete the conversion into the 2 F (S3-enriched) state.30 Stated S state enrichments

are based on membrane inlet mass spectrometry experiments57 reported in Ref. 30.

A Gas Dynamic Virtual Nozzle Jet (GDVN)35 was used to inject the Mn(IV)3CaO4 (closed

cubane) and the Mn(III)3CaO(OH) (non-cubane oxidized) solution samples at a flow rate of

�10 ll/min, focused by a He sheath gas jet, previously saturated with the solvent. Fresh sample

injection components were used for each sample type in order to avoid contamination effects.

B. X-ray absorption spectroscopy at the LCLS XFEL

All experiments were performed with the soft x-ray instrument (SXR) of the LCLS

XFEL58 at a repetition rate of 120 Hz. The x-ray beam was horizontally polarized. The SXR

beamline monochromator was tuned to a bandwidth between 0.4 and 0.6 eV (see Table I). For

XAS scans, the incident photon energy was varied in steps of 0.13 to 0.3 eV using the SXR

beamline monochromator.

The RZP spectrometer used for PFY detection consists of an optical element with effec-

tively 54 x-ray optical reflection zone plate (RZP) structures and two CCD detectors ANDOR
iKon L covering an effective solid angle of �3 � 10�3 rad2 (3 � 10�4 of 4p). For the reduced

non-cubane model compound sample, a previous spectrometer version22,31 was used, effectively

employing 15 RZP structures and one ANDOR iKon L detector. The RZP structures have been

written on Si wafers and coated with Ni for an improved diffraction efficiency of �15%, which

in the case of the 54 RZPs was additionally increased to �20% in the �1st order for Mn La,b

at �637 eV due to a variable profile depth of the zone plate structures. The spectrometer

entrance was shielded with a 300 nm (200 nm) Al filter from LUXEL Corp. (USA) to block visi-

ble and IR light and an additional moveable parylene filter to prevent coating of the Al filter by

sample debris during the measurement. Each CCD has 2048 � 2048 pixels with a size of 13.5

� 13.5 lm2, binned to 512 � 512 pixels. The active area of a CCD chip covers 27.6 �
27.6 mm2. The detection efficiency of the CCD at a photon energy of 640 eV is �0.9. The

CCD readout noise was �5*G CCD counts (rms) at �60 �C (G being the CCD gain factor),

whereas a photon energy of �640 eV corresponds to �30*G CCD counts. For noise reduction,

all pixel values below a threshold of 20*G CCD counts were omitted near the Mn spots.
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At each scan step, the spectrometer CCD was integrated for equal time spans (5 to 17 s).

The Mn La,b and the O Ka signal and the total fluorescence signal in the 0th order reflection

are integrated in rectangular regions of interest (ROIs) (drawn around the individual signals) for

each scan step, which essentially improves the S/N ratio of the Mn La,b fluorescence signal.

Long-term drifts of the jet position along the axis of the x-ray beam by tens of micrometers on

the order of several minutes were considered for the final analysis by a dynamic adaption of

the ROIs such that these remained centered on the signal spots on the CCD.

For each spectrum, we measured a PFY-XAS spectrum of the sharp, most prominent Mn

L3 feature of the Mn2þ
aq solution sample for calibrating the absolute shift relative to the spec-

trum of Mn2þ
aq solution measured previously.16 In addition, a linear stretch factor for the

energy axis was fitted for the best agreement of the Mn L3 and L2 spectral positions of a

Mn2þ
aq solution sample to those in our previous work.16 We estimate the uncertainty of the

energy calibration to be on the order of �50 meV.

C. X-ray induced sample damage

The focus sizes were measured in situ with an offline fluence-scan imprint method on lead

tungstenate59 and a fluorescent YAG screen monitored by an Infinity K2/SC microscope in the

axis of the x-ray beam. The energy of the x-ray pulses was monitored with gas monitor detec-

tors (GMD) prior to entering the SXR beamline and at the end of the beamline60 prior to the

focusing optics. The energy of the x-ray pulses on the sample was determined according to the

formalism used previously22 for both (if available) GMD signals and averaged signals. We esti-

mate 25% absolute uncertainty for the averaged pulse energy values and the deduced magni-

tudes from the discrepancy of the two GMD values. All estimates of sample damage assume a

Gaussian x-ray pulse profile in space and time coordinate. A detailed discussion on our esti-

mates for sample damage is given in the supplementary material

The experimental x-ray pulse characteristics and damage estimates are listed in Table I. The

magnitudes ns, �s, and Is are averaged over the probed “skin volume,” i.e., attenuation length times

x-ray focus size (FWHM), and are related to the peak values via an averaging factor of cs¼0.456

(see supplementary material for details). The “skin doses” Ds ¼ ð0:402�EpÞ=ðqK � V � HÞ absorbed

by the probed “skin volume” (focus size V � H (FWHM) times x-ray attenuation length K �
0.8 lm) were calculated with the pulse energy Ep and the average sample density of q � 1 g/cm3

(for H2O as a solvent). The skin-volume averaged probability for multi-photon absorption P
m

on

the Mn L3 resonance by a molecule with m Mn atoms was calculated via P
m

lð Þ ¼ 1� Pl 1ð Þ �
Pl 0ð Þ=1� Pl 0ð Þ; where Pl kð Þ ¼ lkexp �m � lð Þ=k! is the discrete Poisson distribution and l ¼
lres ¼ ns � rres is the resonant atomic absorption probability for a single photon with the skin-

volume averaged area density of photons ns and an absorption cross section of rres ¼ 12 Mbarn61

on the Mn L3 peak resonance of aqueous Mn(II) ions. The skin-volume averaged transparency,

induced by stimulated emission, TNL � 2~q22 1ð Þ, is estimated with ~q22 1ð Þ from the study by

St€ohr and Scherz51 using the experimental Mn concentrations and averaged intensity Is from Table

I, the Mn 2p life time width of C ¼ 0:32 eV,13 and a dipole transition width Cx ¼ 0:93 meV. For

consistency, Cx is deduced from rres as stated above via the relation 2:9� rres ¼ k2
0Cx=ðCpÞ,

where the empirical factor of 2:9 (Ref. 51) relates the theoretical to the experimental cross section

on the L-edge resonance.

D. Data selection and analysis

The projected CCD signals in the middle row of Fig. 3 show integrated photons per sec-

ond, summed along the vertical CCD columns in the top row. Prior to calculating the difference

in the “On-peak” minus “Off-peak” data (bottom row of the figure), the latter was normalized

to the former for equal counts in the 0th order TFY signal (sum of counts in CCD columns 65

to 285).
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For better visibility, in Fig. 4, the background level of each spectrum, averaged from all

spectrum points with h�� 637.5 eV, was subtracted from each spectrum. The spectra were then

normalized to their maximum value.

Data points for which the required stability of the liquid sample delivery could not be

assured were omitted. For this reason, only the Mn L3 edge region is shown for the “non-

cubane oxidized” compound (center row of Fig. 4), and the Mn L2 edge data were omitted.

For the low concentrated PS II samples, only PFY-XAS scans with clearly identifiable Mn

PFY signal spots on the CCD were selected and averaged for the final data set. For PS II in the

dark state (S1), two spectrum scans were averaged, where the spectral intensities were weighted

by the “On-peak” Mn L fluorescence counts (summed fluorescence counts in the Mn L3 absorp-

tion peak (FWHM)) and normalized to the averaged background level (counts on the low

energy side of the Mn L3 feature).

SUPPLEMENTARY MATERIAL

See supplementary material for further details on the sample preparation, count rate esti-

mates, and the detailed parametrization of the x-ray pulses and x-ray damage.
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