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ABSTRACT

Light management is a key issue for highly efficient liquid-phase crystallized silicon (LPC-Si) thin-film solar cells
and can be achieved with periodic nanotextures. They are fabricated with nanoimprint lithography and situated
between the glass superstrate and the silicon absorber. To combine excellent optical performance and LPC-Si
material quality leading to open circuit voltages exceeding 640 mV, the nanotextures must be smooth.

Optical simulations of these solar cells can be performed with the finite element method (FEM). Accurately
simulating the optics of such layer stacks requires not only to consider the nanotextured glass-silicon interface,
but also to adequately account for the air-glass interface on top of this stack. When using rigorous Maxwell
solvers like the finite element method (FEM), the air-glass interface has to be taken into account a posteriori,
because the solar cells are prepared on thick glass superstrates, in which light is to be treated incoherently.

In this contribution we discuss two different incoherent a posteriori corrections, which we test for nanotextures
between glass and silicon. A comparison with experimental data reveals that a first-order correction can predict
the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

1. INTRODUCTION

Liquid-phase crystallized silicon (LPC-Si) thin-film solar cells on glass are a promising novel approach with a
current efficiency record of 13.2%.4,5 The LPC process is performed on a nanocrystalline Si layer on an interlayer
stack on glass. Light management is used used to (i) reduce the reflective losses of the device via maximizing in-
coupling of light from the glass superstrate into the c-Si absorber, which has a high refractive index. Further, (ii)
the absorption in the solar cell must be optimized via light trapping – especially at long wavelength. Here, light
trapping is of special importance because the absorber in LPC-Si solar cells is only 5 - 20 µm thick. Nanotextures
for light management at the glass-Si interface can only be placed prior to the LPC process. Hence, they must
be smooth in order to ensure LPC-Si with a high electronic quality.6

Figure 1 shows two types of periodic nanostructures between glass and LPC-Si, which we recently demon-
strated: sinusoidal nanotextures1,7 and smooth anti-reflective three-dimensional textures (SMART).3 Both types
are fabricated with nanoimprint lithography8,9 using high-temperature stable sol-gels,10 which are suited for the
LPC process. LPC-Si solar cells on these textures have excellent material qualities and hence electric proper-
ties, such that open circuit voltages exceeding 615 mV or even 640 mV are measured for sinusoidal or SMART
structures, respectively.

Devices using periodic nanotextures for light management can be simulated well with rigorous solvers of the
Maxwell equations such as the finite element method (FEM).11 With FEM, the glass superstrate has to be taken
into account a posteriori, because it is much too thick for a direct treatment with FEM. Domain composition
methods,12 which would allow to solve layer stacks with such thick layers using FEM, are not suited, because
they treat the problem coherently, while sunlight in such a thick layer behaves incoherently.
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Figure 1. The two types of nanotextures for LPC-Si thin-film solar cells discussed in this paper:
(a) (i) The layer stack with a sinusoidal nanotexture,1 (ii) the sinusoidal texture used in the simulations, which is generated
according to Eq. (6)2 and (iii) an atomic force microscopy (AFM) measurement of a sinusoidally nanotextured sol-gel
layer on glass with 750 nm pitch and about 150 nm texture height, hence an aspect ratio of about a = 20%.
(b) (i) An illustration and (ii) a coloured SEM picture of smooth anti-reflective three-dimensional textures (SMART),3

which consist of silicon oxide (SiOx) nanopillars in a hexagonal array covered by titanium oxide. SMARTs are characterized
by the pitch P [as in (a,ii)], the height h and the filling fraction, given as the surface fraction covered by the SiOx oxide
nanopillars.

In this manuscript we describe a simple first-order correction to take the effect of the glass-silicon interface
into account a posteriori. We compare the numerical results to experimental data and also to the zeroth-order
correction, which only takes the initial reflection loss at the air-glass interface of about 4% into account.

This first-order correction can also be applied to other types of thin-film solar cells, when they have substrates
in the range of millimeters such as perovskite solar cells13 or thin film silicon solar cells.14

2. THEORY

In numerical simulations, periodically structured thin-film layer stacks are usually treated with periodic boundary
conditions on the side faces of the unit cell. Because of the perfect periodicity, the far-field reflection and
transmission into the top and bottom infinite half spaces, which cover the layer stack, only happens into discrete
and well-defined diffraction orders, as e.g. illustrated in Ref. 2 for hexagonal gratings. The reflectivity R of the
structure in the glass halfspace can be calculated with

R(λ) =
1

|Eg
i (λ)|2 cos θgi (λ)

∑
j

∣∣Eg
j (λ)

∣∣2 cos θgj (λ), (1)

where the electromagnetic field components Eg
j and the angles θgj are output from the Maxwell solver. The

subscript i denotes the incident wave and the superscript g denotes fields and angles in glass, as depicted in Fig.
2(a); λ is the wavelength. The sum is taken over all channels into which the structure reflects.

The zeroth-order correction accounts only for the initial reflection of the air-glass interface. The reflectivity
in air R0 is calculated using

R0(λ) = R(λ) [1−Rg(λ)] +Rg(λ), (2)

where the superscript 0 denotes the zeroth-order correction and Rg is the reflectivity of the air-glass interface
(about 4% at normal incidence).2,15

The first-order correction takes into account that not all the light, which is reflected from the layer stack into
the glass half space, is transmitted into air but that a part is reflected back into the layer stack by the glass-air
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Figure 2. (a) Cross section through a periodic unit cell (enclosed by the green box) with a sinusoidal interface2 and the
glass and silicon half spaces above and below the unit cell. The first-order correction described in this paper accounts
for the interaction of the glass-air interface with light, which is reflected from the unit cell into the glass half space. The
sketch depicts all the electric field components needed for this calculation. (b) Because of Snell’s law the diffraction orders
are present at much smaller angles in glass than in air. If a diffraction order is scattered into an angle larger than the
critical angle, which is about 41°for a glass-air interface, all the energy is directed back towards the layer stack.

interface. For its calculation, the electric field strengths Ea
n and angles θan in air (superscript a) must be derived

using the Fresnel equations and Snell’s law, respectively,

R1 =
1

[Ea
i |

2
cos θai

∑
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2
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Ea
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2
] cos θaj +Rg. (3)

Here, we have to decompose the Eg
j vectors into s- and p-polarized components before multiplying them with

the Fresnel coefficients tsn and tpn, respectively. Note that tsj and tpj describe waves that are transmitted from
glass into air. In contrast, Ea

i is connected to Eg
i , which is used in Eq. (1), via transmission from air into glass.

For the decomposition, we first define a local orthonormal base [nk,j , ns,j , np,j ],

nk,j =
kj

|kj |
, (4a)

ns,j =
nn × nk,j

|nn × nk,j |
, (4b)

np,j = nk,j × ns,j . (4c)

Here, nn = (0, 0, 1) is the normal to the air-glass interface, kj is the jth k-vector of the electric field, which we
obtain from the FEM simulation, and × denotes the vector product. If nn and nk,j are parallel, Eq. (4b) is
replaced by

ns,j = (1, 0, 0). (4d)

Now, Eg
j can be decomposed into s- and p-polarized components via projecting Eg

j onto ns,j and np,j , respectively,

Eg
s,j = Eg

j · ns,j , Eg
p,j = Eg

j · np,j . (5)

Note that the zeroth-order correction leads to an upper bound of the reflectivity, while the first-order correction
leads to a lower bound. Higher-order corrections, where light that is reflected back into the layer again hits the
nanotexture cannot be performed a posteriori — they require the calculation of the scattering matrix, which
connects all incoming directions to all outgoing directions. The determination of the scattering matrix and the
evaluation of higher scattering orders is out of the scope of this work.



We illustrate the quantitative difference between the two corrections with a simple example: assume an
optical system with R = 0.1 under normal incidence, which only reflects specularly: with Rg = 0.04 and using
Eq. (2) we find R0 = 0.136. The first-order correction takes the light into account that is reflected back into the
layer stack at the air-glass interface, R1 = R0 − RRg(1 − Rg), and hence R1 − R0 = 0.00384, which probably
might be neglected. But already if R & 0.3, the absolute difference between the two corrections is about 0.01,
which is significant. Under oblique incidence or when the investigated system is strongly scattering, R0 and R1

may differ by tens of percent, as we will see below.

3. SIMULATION AND EXPERIMENTAL DETAILS

We compared the zeroth- and first-order corrections to each other and with experimental data for layer stacks
consisting of an LPC-Si absorber on glass with a nanotexture in between, as illustrated in Fig. 1. As nanotextures
we used sinusoidal1 and smooth anti-reflective three-dimensional textures (SMART).3

Sinusoidal nanotextures, illustrated in Fig. 1 (a), were already thoroughly studied numerically.2,16 For the
simulations presented in this work, we use a negative cosine nanotexture, which is illustrated in Fig. 1(a,ii).
Mathematically, it is – up to vertical and horizontal scaling – described with

f(x, y) = − cos(x) cos
[
1
2

(
x+
√

3y
)]

cos
[
1
2

(
x−
√

3y
)]
. (6)

We calculated the aspect ratio of the experimental sinusoidal samples by dividing the texture height, derived from
AFM measurements, by the pitch. The error of the aspect ratio was deduced from the AFM error of ±20 nm.
The reflectance spectra were obtained with an integrating sphere of 150 nm diameter, which is attached to a
PerkinElmer LAMBDA 1050 spectrophotometer, at θin = 8◦ angle of incidence.

SMARTs, illustrated in Fig. 1 (b), consist of silicon oxide (SiOx) nanopillars in a hexagonal array covered by
titanium oxide (TiOx). A thin SiOx layer is used as antireflective coating.

The experimental samples have an LPC-Si layer thickness of about 10 µm, while in the simulations the silicon
layer is considered to be infinitely thick. For wavelength shorter than about 600 nm, all light that reaches the
10 µm-thick silicon layer will be absorbed. Hence, we compare simulated and measured reflectance spectra in a
350-600 nm range.

The reflected field components in glass Eg
n(λ) and the their angles θgn(λ) with respect to the z-axis were

obtained with the Maxwell solver JCMsuite, which utilizes the finite element method (FEM).17 The optical
system studied for the simulations in this work is sketched in Fig. 2(a).

4. RESULTS

In glass, the different diffraction orders are present until much longer wavelength than in air, as illustrated in
Fig. 2 (b). Figure 3 shows numerical and experimental 1 − R spectra for a sinusoidally nanotextured sample
with 750 nm pitch. Large differences are seen between the two corrections. The numerical results are shown for
the angles of incidence of θin = 0◦ and θin = 8◦. Our spectrophotometer measures reflectance at θin = 8◦ angle
of incidence. We observe that the θin = 8◦ curve matches much better with the measured data than the curve
for normal incidence.

The difference between the spectra for θin = 0◦ and 8◦ can be understood as follows: as mentioned above,
perfectly hexagonal periodic unit cells scatter light into well-defined diffraction orders with six channels each
(except the zeroth).2 At normal incidence, the spectra show sharp edges, which refer to the threshold wavelengths
at which a certain diffraction order cannot leave the structure any more. At θin = 8◦, the six channels of one
diffraction order are scattered into different angles and hence vanish at different threshold wavelengths. Hence,
instead of a sharp edge several less pronounced edges are observed, as seen in Fig. 3.

Figure 4 shows results for a SMART texture, as illustrated in Fig. 1 (b). These results were obtained for
two different filling fractions, a structure height of h = 50 nm and 750 nm pitch. As for the sinusoidal textures,
the first-order correction leads to significantly smaller reflectivity as the zeroth-order correction. However, the
difference is smaller than in the sinusoidal case [Fig. 3], probably because the layer stack containing TiOx already
has an certain antireflective effect. Also experimental data is shown; its filling fraction is about 50%. However,
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Figure 3. Numerical and experimental 1 − R spectra for the sinusoidally textured layer stacks illustrated in Fig. 1 (a).
The shown data is for 750 nm pitch. Numerical results were calculated with the 0th- and 1st-order corrections, as defined
in Eqs. (2) and (3), respectively. The two corrections differ because not all diffraction orders that are present in glass
can propagate into air [see Fig. 2 (b)]. Simulation results are shown for two angles of incidence: θin = 0◦ (thin lines) and
θin = 8◦ (thick lines). Experimental results were obtained with θin = 8◦.
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Figure 4. 1 − R spectra for the SMART layer stacks illustrated in Fig. 1 (b) with two different filling fractions and ≈
50 nm SMART height for 750 nm pitch. Numerical results were calculated with the 0th- and 1st-order corrections, as
defined in Eqs. (2) and (3), respectively. The two corrections differ because not all diffraction orders that are present in
glass can propagate into air [see Fig. 2 (b)]. Experimental data is shown for a filling fraction of around 50%. Simulation
results are shown for θin = 0◦ angle of incidence; experimental results were obtained with θin = 8◦.



the simulation curve for 75% filling fraction matches better with the experimental data. The simulations can
reproduce the trend seen experimentally, especially the peak in reflectivity at 370 nm wavelength is reproduced.
The differences probably are caused by differences between the experimental and the simulated layer stack. As
seen in the SEM picture in Fig. 1 (b,ii), the interface between the SMART and silicon is not flat, in contrast to
what is assumed in the simulations. Further, the pillars are rounded at the top and not perfect cylinders.

5. SUMMARY AND OUTLOOK

When simulating the optics of periodically nanotextured layer stacks on thick glass substrates it is imperative
to take the air-glass interface into account adequately. Often, one only corrects for initial reflection losses at
the air-glass interface, which are about 4% at normal incidence. We show that it is also very important to take
the first-order reflections at the glass-air interface into account, which occurs for light that is reflected from the
nanotextured layer stack into glass. The first-order correction leads to much better agreement between measured
and simulated reflection data, because reflection orders that are present in glass at large angles cannot propagate
into air.

In a next step, we will implement the calculation of the scattering matrix, which connects all the incoming
directions to all outgoing directions. Once this scattering matrix is calculated using FEM, an almost arbitrary
number of reflection corrections can be evaluated at very little computational cost.

Even though the first-order correction might not be as accurate as the approach, where a large number of
correction orders can be determined using the scattering matrix, it is very simple and can be quickly applied to
many problems, where a thick glass superstrate cannot be taken into account directly.
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2. K. Jäger, C. Barth, M. Hammerschmidt, S. Herrmann, S. Burger, F. Schmidt, and C. Becker, “Simulations
of sinusoidal nanotextures for coupling light into c-Si thin-film solar cells,” Opt. Express 24, pp. A569–A580,
2016.
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