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Abstract: We present a texturing method for liquid phase crystallized silicon thin-film solar
cells enabling a maximum achievable short-circuit current density of 36.5mA cm−2 due to
optimized light management compared to current textured devices.
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1. Introduction

Liquid phase crystallization (LPC) of silicon on glass is a technology that allows manufacturing high-quality poly-
crystalline silicon thin-films between 5−40µm in thickness, so far leading to solar cell efficiencies of up to 13.2% [1].
With decreasing cell thicknesses light-management measures, specifically anti-reflection and light-trapping, gain in
importance. An efficient way for anti-reflection in LPC silicon thin-film solar cells is nano-structuring of the glass-
silicon interface with smooth [2] or sinusoidal [3] nano-textures. These approaches also allow for an excellent elec-
tronic material quality with open-circuit voltages (Voc) above 600mV. However, the height-to-period ratio (h/P) of the
nano-textures was limited to about 0.3 due to shrinkage of the involved nano-imprinted sol-gel materials [3, 4], hence
also limiting the anti-reflective properties.
In this contribution, we introduce a method to replicate these nano-structures with a height-to-period ratio of 0.5 by
combining nano-imprinting and reactive ion etching, allowing to optimize optical performance of 10− 15µm LPC
silicon absorber layers grown and crystallized on sinusoidal textures.

2. Experimental

The liquid phase crystallized (LPC) silicon thin-film solar cells contained in this study are fabricated on glass substrates
coated with a 250nm Silicon Oxide (SiOx) / 70nm Silicon Nitride (SiNx) / 10nm SiOx interlayer stack (Fig. 1(a)),
serving as diffusion barrier against glass impurities, anti-reflective coating and passivation layer, respectively [5, 6].
Onto this stack a 10−15µm thick silicon absorber is deposited using high-rate electron-beam evaporation and subse-
quently liquid phase crystallized (cf. inset in Fig. 2).
The interlayers between glass and LPC silicon are critical for device performance. Recently, it was demonstrated that
interlayers produced by plasma-enhanced chemical vapour deposition (PECVD) are superior to those from physical
vapour deposition [5, 7]. If nano-structures are introduced using high-temperature stable sol-gels, the texture is posi-
tioned between the diffusion barrier and anti-reflective coating. Hexagonal sinusoidal nano-textures with a period of
P = 750nm and a height-to-period ratio of 0.5 were produced by interference lithography [8]. In order to make the sol-
gel compatible with LPC processing, a hard bake at 600◦C for 1 hour is required to drive out organic compounds. This
leads to substantial shrinking of the nano-structures [4], limiting the height-to-period ratio of the imprinted sinusoidal
texture to 0.3. In the following this approach is referred to as high-temperature stable sol-gel method.

Fig. 1. (a) Optimized interlayer stack with SiNx anti-reflective layer. (b) Schematic production pro-
cess of sinusoidal textures combining nano-imprint lithography (NIL) and reactive ion etching (RIE).



In the newly developed method presented here, the PECVD diffusion barrier is deposited in a first step with a
thickness of 1000nm, such that the minimum thickness after texture replication is sufficient to serve as diffusion
barrier. The texture is then imprinted into a commercially available organic sol-gel (UVcur06 produced by micro
resist technology) with low-temperature stability but low shrinkage after its deposition onto the glass substrate via
spin-coating (cf. Fig. 1(b), step 1 and 2). The nano-structured sol-gel layer serves as a three-dimensional etching mask
during the subsequent dry reactive ion etching (RIE) step (Fig. 1(b), step 3). A gas mixture of 25sccm CHF3 / 25sccm
Ar, chamber pressure of 30mTorr and a radio frequency power of 200W is found to provide the desired selectivity of
sol-gel to PECVD SiOx of close to 1:1, allowing to replicate the imprinted structure into the SiOx layers with high
structural fidelity. An oxygen plasma treatment removes possible organic sol-gel residues, ensuring the compatibility
with subsequent high-temperature processes. The presented method of nano-texture production will henceforth be
referred to as NIL+RIE texture.
If a textured glass substrate is used and the absorber is capped by a SiOx layer prior to crystallization, double-sided
textured silicon layers are obtained [9]. Liquid phase crystallization is performed using a line-shaped laser beam of
808nm wavelength and a scanning speed of 3mm/s under vacuum or ambient air.
For the planar sample, a rear-side pyramidal texture using an isopropylic-alcohol free KOH based process with a
texturing agent from GP Solar (Alkatex) is introduced [1]. This step is omitted for the textured samples as it has been
shown that a KOH pyramid texture does not improve absorption for double-sided sinusoidal textures [10]. Optical
characterization was performed using a Perkin Elmer Lambda 1050 photo-spectrometer with an integrating sphere.

3. Results

The absorption properties of a silicon absorber with sinusoidal texture prepared by the newly developed NIL+RIE
technique (cf. inset in Fig. 2) is depicted in Fig. 2 (blue), compared to a planar interlayer stack (black) and a state-
of-the-art sinusoidal textured produced by the high-temperature stable sol-gel method with a h/P ratio of 0.3 (red,
data from ref. [3]). Both textures efficiently enhance light absorption over the whole wavelength regime. This can be
attributed to both an anti-reflective and light-trapping effect. The anti-reflective properties without influence of back-
side textures are assessed for wavelengths < 600nm by mean reflectance (R̃300−600), where the penetration depth is
smaller than the cell thickness. In this regime, the NIL+RIE (R̃300−600 = 8.0%) exceeds both the texture imprinted
into high-temperature stable sol-gel (10.1%) and the planar reference (16.3%) due to its higher height-to-period ratio.
It should be noted that 4% reflection (dotted line in Fig. 2) takes place when light first enters the solar cells device
(cf. inset in Fig. 2). This 4% loss could be adressed by additional anti-reflective measures in future solar cells device
designs.

Fig. 2. Absorptance in 15µm thick silicon absorbers with a planar interlayer stack (black), a sinu-
soidal texture produced by the high-temperatue stable sol-gel method (red) and the NIL+RIE method
(blue). The inset depicts a schematic stack of the NIL+RIE sample.



The same trend is observed for the long wavelength regime, where anti-reflective properties at the front-side and
light-trapping properties at the back-side of the silicon absorber are superimposed. Both texture’s absorption exceeds
the planar reference, with the NIL+RIE texture outperforming its high-temperature stable counterpart. In terms of
maximum achievable open-circuit current density jsc,max, calculated assuming that every incident photon generates an
electron-hole pair, the improved light management leads to an increase from jsc,max = 30.7mAcm−2 for the planar
reference to 34.0mAcm−2 for the sinusoidal texture produced by the high-temperature stable sol-gel method and
36.5mAcm−2 for the silicon absorber with a NIL+RIE texture, corresponding to a 19% (relative) increase compared
to the planar reference.

4. Conclusion

An advanced method for texturing interlayers for liquid phase crystallized silicon thin-film solar cells on glass was
introduced using nano-imprint lithography (NIL) in combination with reactive ion etching (RIE). The nano-imprinted
texture serves as three-dimensional etching mask during the anisotropic etching. Optimized process parameters allow
a pattern transfer with high structural fidelity.
Using this method, sinusoidal textures with a height-to-period ratio of 0.5 could be produced compared to 0.3 for
the state-of-the-art method using high-temperature stable sol-gels. The higher nano-structures allowed to enhance the
absorptance of 15µm thick silicon absorbers further, reaching maximum achievable short-circuit current densities of
36.5mAcm−2 compared to 34.0mAcm−2 for the high-temperature stable and 30.7mAcm−2 for a planar interlayer
stack.
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large areas by interference lithography,” Microelectron. Eng. 98, 293-296 (2012).

9. C. Becker, V. Preidel, D. Amkreutz, J. Haschke, and B. Rech, “Double-side textured liquid phase crystallized
silicon thin-film solar cells on imprinted glass,” Sol. Energy Mater. Sol. Cells 135, 2-7 (2015).
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