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Machine learning classification for field
distributions of photonic modes
Carlo Barth1 & Christiane Becker1

Machine learning techniques can reveal hidden structures in large amounts of data and have

the potential to replace analytical scientific methods. Electromagnetic simulations of photonic

nanostructures often produce data in significant amounts, particularly when three-

dimensional field distributions are calculated. An optimisation task, aiming at increased

light yield from emitters interacting with photonic nanostructures, enforces systematic

analysis of these data. Here we present a method that combines finite element simulations

and clustering for the identification of photonic modes with large local field energies and

specific spatial properties. For illustration, we use an experimental–numerical data set of

quantum dot fluorescence on a photonic crystal surface. The application of Gaussian mixture

model-based clustering allows to reduce the electric field distributions to a minimal subset of

prototypes and the identification of characteristic spatial mode profiles. The presented

clustering method potentially enables systematic optimisation of nanostructures for

biosensing, bioimaging, and photon upconversion applications.
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Machine learning is a rapidly developing discipline which
uses statistical approaches to learn from data without
explicitly rule-based programming. Driven by today’s

massive increase in data amounts, the related techniques are
extended and improving at a rapid pace1. Machine learning is
currently applied to all aspects of science, from not only health
sciences and psychology2,3, biology4–6 and environmental7 and
material sciences8,9, but also to matters of everyday life from
online security to finance and insurance. While supervised
learning has led to breakthroughs in computer vision10 and
speech recognition11, unsupervised learning is expected to
become far more important in the future12. The latter techniques,
such as clustering13–15, allow for the recognition of patterns in
unlabelled data and can therefore reveal a hidden structure. They
have been successfully applied to, e.g., anomaly detection16,17 or
genetics18.

In the field of nanophotonics, increasing computer power,
storage space and data throughput, as well as improvements in
modelling techniques greatly accelerated all-numerical system
design. For nanostructures three typical optimisation tasks are
met: (1) simple design, in which scalar parameters are optimised
for a scalar output (e.g., lengths/refractive indices to reflectivity);
(2) inverse design, which deals with multivariate parameters to
optimise a scalar output (e.g., permittivity distribution to reflec-
tivity); and finally (3) qualitative design, where scalar parameters
are varied to optimise multivariate outputs (e.g., lengths/refractive
indices to three-dimensional (3D) field distribution).

Simple design tasks are generally solved by simulating the
system for many different parameter combinations (i.e., grid
search) or by applying function minimisation routines. More
sophisticated techniques such as the reduced basis method19 for
finite element method (FEM) simulations have successfully been
applied to speed up this optimisation process for large parameter
spaces. Inverse design tasks introduce a high-dimensional input
parameter space, typically by allowing for arbitrary changes in the
permittivity distribution ϵðrÞ of the nanostructure. Machine
learning techniques have successfully been applied for this pur-
pose, mainly using genetic algorithms20–26. Simple and inverse
tasks have in common that they possess a scalar measure of
success, i.e., they can be seen as minimisation problems. The
machine learning approach in inverse design therefore belongs to
the field of supervised learning (more specifically regression). The
third design task introduced above substantially differs in the way
that the system should be optimised for a high-dimensional
output. Due to the inaccessibility of a scalar success metric, we
denote this problem as qualitative design. This is for example the
case if the 3D spatial distribution of the electromagnetic fields has
to be taken into account. Usually, such problems are solved by
appropriate visualisations. However, since any change in the
input parameters leads to a change in the high-dimensional
output, the data amounts quickly become extremely large. We
will demonstrate below that clustering techniques of the field of
machine learning are able to overcome these issues by reducing
the output dimensionality.

As indicated before, an example of qualitative design is to
optimise a photonic nanostructure, e.g., a photonic crystal (PhC),
for an appropriate spatial field distribution. This is of high rele-
vance whenever an interaction of the field with a (potentially
vague) particle distribution is present, e.g., for emitters on
nanophotonic surfaces or emitters embedded into the nanos-
tructure. PhC slabs exhibit a phenomenon called leaky modes:
resonances that can be excited using external radiation27–31.
Leaky modes have been used to improve various applications
(e.g., light trapping in photovoltaic devices32–36, light-emitting
diodes37,38), but can also affect near-surface emitters, such as
quantum dots (QDs), atoms, or molecules. Especially in the life

sciences, the applications range from PhC enhanced microscopy
and single molecule detection to enhanced live cell imaging, DNA
sequencing, and gene expression analysis39–42. Besides the rather
well-investigated extraction enhancement effect28–30,37,43–46, the
excitation enhancement effect41,47–52 increases the stimulated
emission rate of the emitters by enhanced near-field energy
densities of leaky modes in the absorption wavelength range. To
optimise photonic nanostructures for excitation enhancement, it
is therefore inevitable to take the 3D spatial electromagnetic field
distribution into account.

In this study we present a powerful technique based on clus-
tering for the classification of 3D electromagnetic field distribu-
tion data. We directly apply the technique to a specific data set of
our previous publication on fluorescence enhancement of lead
sulphide (PbS) QDs on a silicon PhC slab surface53 with the
electric field distribution data generated by a commercial finite
element Maxwell solver54 (see Methods section and our previous
studies19,55,56). We first reconsider the experimental and
numerical results of the previous study53, highlighting aspects
which were left unexplained by the prior analysis technique.
Afterwards, we introduce the clustering technique and apply it to
systematically analyse the 3D field energy distribution properties.
The distributions are classified by assigning them to distribution
prototypes which are consulted as representative solutions to fully
explain the effects observed in the experiment. We further con-
sider a mathematical method based on silhouette coefficients57 to
assess the clustering result. Based on these analyses we explain
how the method enables to solve complex optimisation tasks with
high-dimensional output. Further, the practicability of the char-
acteristic spatial mode profiles is discussed referring to possible
emitter geometries in biosensing and bioimaging applications.

Results
Description of sample geometry and underlying data set. The
field enhancement effect on photonic nanostructures is sketched
in Fig. 1a, depicting emitters (black dots) that interact with the
electric field E(r) of a leaky PhC mode (redish colours) excited by
an external laser source. The illumination conditions introduce
four parameters: the laser wavelength λ, the laser polarisation P
(transverse-electric (TE) or transverse-magnetic (TM)), the polar
angle θ with the plane normal, and the azimuthal angle ϕ used to
define the high-symmetry direction (Γ−M or Γ− K). The latter
is also indicated in the scanning electron microscope image of the
silicon PhC slab, a hexagonal nanohole array with 600 nm peri-
odicity and slab thickness of 115 nm (Fig. 1b). The experimental
fluorescence enhancement data underlying this computational
clustering study have been measured on such a PhC slab coated
with PbS emitters. A 3D schematic of the unit cell used for
simulation of the corresponding numerical data set is depicted in
Fig. 1c. It includes the symmetry xy, xz, and yz planes used for
electric field export.

As mentioned, the energy density of the electric field of the
leaky modes, wlm(r), can be larger compared to the energy density
of the incident plane wave, wpw, known as field energy
enhancement (wlm(r)/wpw > 1). To study this effect in large
parameter spaces we define the volume-integrated field energy
enhancement

Eþ ¼ 1
wpwVsup

Z
Vsup

wlmðrÞdVsup; ð1Þ

where Vsup is the volume of interest. In our case Vsup is the
superspace of the computational domain and defined by the
photonic crystal hole and a layer above the silicon with height
hsup= 250 nm, as indicated by the yellow dashed line in Fig. 1a.
The energy density of the plane wave has no spatial dependence
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and is proportional to the amplitude of the electric field, Epw,0,
and the refractive index n of the surrounding medium, i.e.

wpw ¼ ϵ0
4
n2 Epw;0

��� ���2: ð2Þ

In Fig. 1a uniform random distribution of emitters is shown as an
example. However, depending on the coating process, emitters
might have a very specific spatial distribution in a real
application, e.g., a monolayer attached to the surface, or a higher
concentration inside the holes, or at the plateaus between the
holes. Consequently, the spatial distribution of the energy density
wlm(r) becomes a determining factor and, therefore, the
integrated field energy enhancement E+ is not sufficient to
quantify the effect on the emitters. An optimised design for an
application as sketched in Fig. 1a can hence be achieved by
identifying a mode which has: (i) a large volume-integrated field
energy enhancement E+ and (ii) an appropriate spatial field
energy density distribution overlapping the locations of the
emitters, at the same time. Task (i) is a simple design task, as
defined in the Introduction, while (ii) is a qualitative task, i.e., an
optimisation of a multivariate output.

Figure 2a, b repeat the main findings of the prior fluorescence
enhancement study53. Figure 2a shows the fluorescence enhance-
ment (F+) maps obtained by tilting the QD-coated PhC sample
along the respective high-symmetry directions of the irreducible
Brillouin zone (Γ−M or Γ− K, adjusted using ϕ), and by using
TE or TM polarisation P of the incident laser radiation. Each
measured spectrum (for a single incident angle) was first
integrated over the fluorescence peak from λ= 1200 nm to λ=
1700 nm and normalised to the measured incident laser power
and the absorption profile of the QDs, yielding the fluorescence
F. A minimum estimate for the fluorescence enhancement F+ is
obtained from dividing by the minimal value in each of the maps.
The maps feature regions of enhanced fluorescence caused by
increased energy densities of the fields at the emitter positions.

Figure 2b maps the electric field energy enhancement
E+ integrated over the simulated superspace volume Vsup, which
contains the QDs (see Eq. (1)). The E+ maps exhibit clearly
visible bands of strong field energy enhancement which partly
correspond to regions of high measured fluorescence F+. Some
deviations are caused by a Q-factor mismatch between the
spectral bandwidths of the leaky modes and the excitation laser
source. However, a few features of the measured F+ maps remain
unexplained, for example, the declining band after the antic-
rossing point, which is visible in the E+ map for the Γ− K, TE

configuration, but missing in the corresponding experimental
fluorescence enhancement F+.

The E+ results solve task (i), as described above. Task (ii)
potentially enforces to take into account 3D field distribution data
of all combinations of the illumination condition parameters λ, P,
θ, and ϕ. If the number of considered wavelengths Nλ and the
number of angles Nθ becomes large, it is no longer feasible to
directly visualise all the 3D field distributions for all points in the
λ–θ maps shown in Fig. 2. It is hence necessary to reduce the
amount of field distribution data in an appropriate way. One
possibility to achieve this reduction is to pitch on specific
wavelengths and incident angles for which the field distribution is
evaluated, as it was done in the previous study53. This way,
however, information is mainly gained at random, so that general
trends might be overseen. A more systematic approach is to
cluster field distributions which are similar, and to therefore
derive typical distributions (i.e., distribution fingerprints). It is
known that a certain undisturbed photonic band in the leaky-
mode regime will not significantly change its symmetry properties
when crossing the λ–θ space31,58, as will be explained in more
detail below. As a result, the entirety of field distributions is
composed of a finite set of patterns which are basically caused by
the finite number of bands. This feature space can efficiently be
partitioned into the typical patterns using clustering techniques.

Introduction and justification of the clustering technique. The
E+ maps given in Fig. 2b only provide information about the
volume-integrated field enhancement over a characteristic
volume Vsup, marked by the yellow dashed line in Fig. 1a.
Therefore, regions of high E+ can be regarded as a necessary
condition for fluorescence enhancement, but not as a sufficient
one. A high E+ without a corresponding fluorescence enhance-
ment F+ hence indicates a lack in the spatial overlap of the
emitters with the regions of enhanced field energy density.

However, it is known that bands of the photonic crystal have
well-behaved spatial properties when varying the k-vector
between two high-symmetry points of the irreducible Brillouin
zone31,58. More specifically, the modes belong to the same
symmetry point group as the system seen from the point in
k-space, i.e., they exhibit the same spatial symmetry. Conse-
quently, it is theoretically justified to expect that the spatial
properties of the bands only change smoothly with θ. For a fixed
high-symmetry direction, e.g., Γ− K, we only expect two types of
solutions which are either regions that correspond to leaky-mode
bands or regions that are off any photonic band, and therefore
correspond to the continuum of radiation modes. The regions

xy

z

xz -planeyz -plane

xy -plane

c

1 μm

Γ – K

Γ – M

b

Silicon

Glass Glass
Silicon

Near field
enhancement

Incident

light

Emitters

θ

a

hsup

�

Fig. 1 Overview of the photonic nanostructure. a Light incident on a silicon photonic crystal (PhC, grey) on glass (cyan) excites a leaky mode that exhibits
enhanced electromagnetic near-field energies (redish colours) in the superspace volume (marked by the yellow dashed line). Emitters (black dots) in the
vicinity of the PhC surface interact with the local electric field distribution. b Scanning electron microscopy image of the silicon PhC sample with denoted
high-symmetry directions Γ− K and Γ−M. c A unit cell of the PhC system as used in the simulation. Yellow, green, and red rectangles mark the planes
used for the field export
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of the radiation modes are expected to exhibit solutions that
resemble plane waves, i.e., show oscillatory behaviour in the the
exterior domain. All things considered, only a small number of
different spatial symmetry types is expected, which is of the order
of the number of bands that cross the parameter scan window.

This is where machine learning comes into play. If we consider
the specific 3D electric field distribution for a single illumination
setting as a sample, and the electric field values of each point in
the considered volume as features, then clustering techniques are
able to subdivide the entirety of field distributions into a finite
number of field distribution prototypes. This approach is
reasonable because the data range is expected to contain a finite
number of typical field patterns, and each of the real field patterns
can be identified with one of those prototypes. Moreover, these
prototypes have a sufficient uniqueness, e.g., they considerably
differ in their symmetry properties. The 'Clustering of electric
field data' in the Methods section gives a detailed description of
how the clustering is performed. In a nutshell, for each
illumination condition, i.e., a set of ðP; ϕ; θ; λÞ, the electric field
strength E= (Ex, Ey, Ez) is derived from an FEM simulation. It is
sufficient to export the fields on symmetry planes to reduce the
data volume, for which we use the xy, xz and yz planes marked in

Fig. 1c. The validity of this approach was tested using a
comparison to full-3D exports using a smaller data set. Note
that, in contrast to the the volume-integrated field energy
enhancement E+ which is calculated in the volume Vsup (Fig. 1a),
the fields for the clustering are also considered in the dielectric
materials (silicon PhC and glass substrate, Fig. 1c). To account for
the different cluster sizes (narrow bands) and unknown cluster
shapes in the data set, the flexible Gaussian mixture model
(GMM) clustering technique is used (see 'Gaussian mixture
model clustering' in the Methods section for details), implemen-
ted in the Python library Scikit-learn59. We compared the GMM
clustering technique to various other clustering algorithms
implemented in Scikit-learn, namely k-means, density-based
spatial clustering of applications with noise (DBSCAN), and
spectral clustering. The characteristics of these techniques are
very different and cannot be covered in the scope of this study.
While k-means tends to ignore the narrow bands, DBSCAN and
spectral clustering did not result in classifications in-line with the
physical expectation at all. We suppose that the latter two
approaches do not adapt well to these kind of data or may require
very careful parameter tuning. Note that the data and the code
are published and allow to compare different techniques and
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Fig. 2 Comparison of measurement, simulation, and clustering results. a Measured fluorescence enhancement F+ of lead sulphide quantum dots on a
silicon photonic crystal slab, a 600 nm-periodic hexagonal nanohole array, as a function of vacuum wavelength and incident angle θ of the laser source
(logarithmic colour scale). The columns correspond to the four combinations of sample orientation (Γ−M and Γ− K) and source polarisation (TE and
TM). b Simulated volume-integrated electric field energy enhancement E+ for the same conditions as for the measured fluorescence enhancement F+. The
volume Vsup is defined by the hole and a 250 nm layer above the silicon photonic crystal. The white lines mark the experimental data limits. c Classification
maps depicting the cluster assignments (labels) using different colours independently for each plot, and the respective silhouette coefficients using alpha-
blending with a black background (colour bar omitted). More saturated colours denote larger silhouette coefficients. The classification map for the Γ− K,
TE configuration is highlighted by an orange frame as it is most detailed analysed in the study. Note that (a, b) repeat the same results as already shown in
ref. 53 for a larger angle and wavelength range. Reproduced from ref. 53, with the permission of AIP Publishing
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parameter settings, so that these results are omitted here (see the
data and computer code availability statements below).

From the clustering itself two characteristics can directly be
gained: the classification, which labels each observation with a
cluster index i, and the distribution prototypes, usually denoted as
cluster centres in the general clustering literature. The latter are
the average of the electric field distributions (on the chosen
planes) of all samples that belong to a specific cluster i. We note
that we averaged the normalised input data, i.e., the exact data
used for the clustering, to calculate the prototypes. The
prototypes therefore represent the actual mathematical cluster
centres, with the trade-off that the absolute field amplitude
information is lost, because the samples are normalised
individually. Another possibility would be to average the
unnormalised fields, so that the amplitude information would
be conserved, with the trade-off that the prototypes derived that
way are not exactly the cluster centres. We settled for the
normalised fields, as the amplitude information is essentially
included in the E+ maps. Figure 3 illustrates the complete mode
classification process in a flow diagram. For specific samples of a
parameter space (cyan area), the electric fields are solved using
FEM simulations to construct the clustering input matrix.
Performing the clustering algorithm results in the classification
(i.e., sample labelling) and the field prototypes Ek for each
cluster k.

As in most clustering techniques, the number of clusters must
be specified in GMM clustering, so that the appropriateness of
this choice has to be validated. This aspect will be covered shortly.

Classification maps. The classification can be visualised by
assigning each point (θj, λk) to a different colour that corresponds
to its label i. Recall that the clustering is carried out individually
for each combination of polarisation P and azimuthal angle ϕ
(=high-symmetry direction Γ−M or Γ− K). Plotted in the same
fashion as the E+ maps of Fig. 2b, we denote the resulting figures
as classification maps. These classification maps are shown in
Fig. 2c. The colour scale relates the colours to the labels and,
hence, identify the corresponding cluster. Note that the classifi-
cation maps cannot be compared among each other, although the
same colours have been used. The clusterings for the Γ− K cases
used 8 clusters, while the Γ−M cases only required 7 (i.e., there is
no grey region in these maps). The procedure of determining the
number of clusters will be explained in the next subsection.

When comparing the classification maps to the E+ maps above,
a striking accordance can be observed. The narrow bands of high
field enhancement in the E+ maps correspond to narrow areas at
the same positions in the classification maps. Note that the E+
maps and the classification maps are based on very different data
sets: the former are derived from a spatial integration over the
electric field energy density distribution wlm(r) in the superspace
volume Vsub only (Eq. (1)), while the latter uses electric field
patterns E(r) on planes that include the PhC and glass domains.

When observing the regions off the leaky-mode bands, i.e., the
domains of the radiation modes, it is seen that these regions are
multiply subdivided in some cases; e.g., Γ− K, TM bottom left. In
contrast, other parts are homogeneous over large ranges, such as
Γ−M, TE top right.

Another detail of these plots are the different levels of
saturation used for each point, obtained by alpha-blending with
a black background. This additional layer of information
illustrates the representation quality of the local solution by the
assigned cluster, as determined using so-called silhouette
coefficients57. The silhouette coefficients provide a way to assess
the initial choice of the number of clusters, and how well the
samples lie in their respective clusters, at the same time. The
silhouette coefficient rates how well a sample fits into its own
cluster. If it is far away from all other clusters and very close to
the cluster centre (i.e., prototype), the sample gets a positive
rating. If the distances to a different cluster and its own cluster are
comparable, it is rated with values close to zero. Finally, if it is
much closer to a different cluster, a negative rating is assigned.
See 'Solution quality rating using silhouette coefficients' in the
Methods section for a severe definition.

In all cases, we observe that the saturation decreases at the
border of two clusters. This is expected, as silhouette scores close
to 0 indicate a sample which is in fact close to the border of the
neighbouring cluster. It is apparent from this phenomenon, and
important to stress here, that the clustering technique is a tool.
The field distribution data are not categorical, and so we expect
superposed solutions which are badly represented by pure modes.
That said, these intermediate parts are small, as it is seen from the
saturation distributions, so that the clustering is still a valid and
effective approach.

Silhouette analysis and the number of clusters. Before we
investigate the field distribution prototypes, the quality of the
clustering itself is evaluated using a mathematical analysis.
Without loss of generality, we focus in the following analyses on
the Γ− K, TE configuration and refer to ref. 60 for the other ϕ, P
combinations. We calculate the silhouette coefficients using a
scheme known as silhouette analysis57. Figure 4 depicts a so-
called silhouette plot. The silhouette coefficients for each sample
are plotted as a bar in x-direction with a length corresponding to
its value (negative values point into the −x-direction). The
samples are sorted by their silhouette coefficients, with smaller
values being located at smaller y-positions. In addition, the
samples are grouped for each cluster k and colour-coded using
the same colours as in the classification map highlighted with an
orange frame in Fig. 2c. The red dashed line marks the average of
all silhouette coefficients, which is a measure for the absolute
quality of the representation denoted as silhouette score. The
results are the typical sails or shark fins. The width of each fin in
the silhouette plots is proportional to the area of the corre-
spondingly labelled points in the classification maps.

FEM simulations Mode classification

1 2 3 4
Input matrix

Clustering
(e.g. GMM) Sample labelling

[X ]

Solve fields
Parameter

space

Sample (�m, λ�)

k =

Prototypes Ek

Fig. 3 Flow diagram of the mode classification process. For specific samples of a parameter space (cyan area; spanned by illumination conditions,
geometrical parameters, …), the electric (or magnetic) fields are solved using finite element method (FEM) simulations. From these solutions an input
matrix for the clustering algorithm is composed and used to perform the clustering itself. From the resulting model the classification (i.e., sample labelling)
and the field prototypes Ek for each cluster k are gained
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Considering the distribution of the silhouette coefficients, fins
which are not too sharp are observed, i.e., having broad plateaus
of high silhouette coefficients. There is only a minimum number
of values with negative coefficients. Both arguments together give
a validation for the fact that the number of clusters is not
underestimated: negative values would occur if there were too few
clusters, leaving back samples which do not fit in one of the
classes (s ~−1). Too many clusters could be identified by a large
fluctuation in the fin widths. However, this does not fully apply
here, as the areas occupied by the bands and the residual parts are
unequal. Therefore, equally broad classes are not expected. A
slightly too large number of clusters can be seen as unproble-
matic, because it would basically subdivide the radiation mode
regions further, which are of limited relevance for the interpreta-
tion. Another point that suggests a good representation is that
there are few clusters with below average silhouette scores. In
summary, the optimum number of clusters equals to the
minimum number of clusters for which all the bands visible in
the field enhancement maps are distinguished from flat regions,
and no extensive presence of negative silhouette coefficients
occurs. Since this criterion is not completely rigorous, it is

necessary to compare the results for different choices of the
number of clusters. Using this reasoning, the optimum number of
clusters was determined for each case (results omitted). We note
that subdivisions of the radiation mode regions do not imply a
real physical effect, but are to be considered as a numerical
artefact of the approach. Especially if sharp bands are present in
the parameter window, the number of clusters may have to be
increased in order to detect these bands, as they take a small
fraction of the entirety of samples. We tried to minimise the
unphysical subdivisions by choosing a clustering technique that
adapts well to the problem and by choosing proper parameters of
this algorithm (especially for the covariance type in Gaussian
mixture model clustering).

Field distribution prototypes. As the second essential outcome,
the clustering procedure yields the field distribution prototypes.
As the input data for the GMM algorithm have been electric field
values on three planes, namely xy, xz, and yz, the prototype data
are available on these planes as well. The prototypes for all
clusters of the Γ− K, TE configuration are depicted in Fig. 5 on
all three planes. For the other ϕ, P combinations, please see
ref. 60. The number of columns accounts for the number of
clusters, and each column has a coloured edge in the top-most
row that corresponds to the colour used for that label in the
classification maps shown in Fig. 2c. The cluster label is further
given in the title of the xz row. Each distribution plot depicts the
electric field energy distribution Ek k2 in the respective plane. The
distribution plots further feature semitransparent markings for
the glass superstrate (blue) and the silicon of the PhC (grey) in
the case of xz and yz; and a white circle indicating the hole
circumference in the case of xy. Recall that the colour scales do
not give absolute values, as the prototypes are based on nor-
malised data and, therefore, cannot be compared with respect to
their absolute amplitudes.

For each prototype, the field energy plots on the three planes
give a notion of the 3D field energy distribution. The solutions
with the same label (colour) in the classification maps of Fig. 2c,
which is highlighted by the orange frame, all share this
distribution type. Lower saturations quantify how much the
individual solutions deviate from the prototype. Clusters that
correspond to leaky-mode bands with strong field enhancement,
such as cluster 8 (grey), 3 (green) and 6 (pinkish), have strongly
localised energy distributions as shown in Fig. 5. These three
specific field distributions are also denoted as Mode A, B and C
and have a maximum field enhancement at the plateau, at the
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characteristic field enhancement at the plateau (mode A), the flanks of the holes (mode B), and inside the holes (mode C) of the PhC slab. (Colour scales
do not give absolute values, as the prototypes are based on normalised data.)
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Fig. 4 Silhouette analysis plots for the for the Γ− K, TE configuration. The
silhouette coefficients for each sample are plotted as a bar in x-direction
with a length corresponding to its value. The samples are sorted by
their silhouette coefficients, with smaller values being located at smaller
y-positions. The red dashed lines mark the silhouette score
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flanks of the hole and inside the hole of the PhC, respectively.
In contrast, clusters that belong to radiation modes have
energy distributions that increase away from the PhC, e.g. cluster
2 (dark blue).

Combining field enhancement and clustering results. To
explain the measured fluorescence enhancement effects shown in
Fig. 2a, it is necessary to combine all information gained from the
numerical analysis. This is, the volume-integrated field energy
enhancement maps (E+, Fig. 2b), the classification maps (Fig. 2c),
and the prototype maps (Fig. 5). A guide on how the different
aspects of the results can be connected to yield a complete
interpretation may read as follows. First, select a feature in the
volume-integrated field energy enhancement (E+) map. For these
features the simulation suggests a possible excitation enhance-
ment effect. Second, check whether there is an according feature
in the experimental fluorescence enhancement (F+) map. Third,
observe the corresponding region in the classification maps and
determine the cluster label from the colour using the colour bar.
Fourth, using this label or colour, locate the related column in the
prototype map. Check if the field energy distributions on the
three planes can explain the observed fluorescence enhancement.

We will analyse the results for the Γ− K, TE configuration as
an example. There are two very clear bands that show
anticrossing, a steeper band crossing the complete wavelength
range from roughly 20° to 40°, and a shallower one coming from
top left. The former is very clearly seen in the clustering by the
grey region with label 8. From the prototype map it is observed
that this band has a node along the x-direction and concentrates
its energy at the flanks and the plateaus in y-direction. The
shallower mentioned band undergoes a transition from the green
cluster (label 3) to the red cluster (label 1) in the classification
maps. For the green parts the energy is strongly localised at the
flanks, while the red one can be identified with a radiation mode.
The energy is therefore less well confined to the surface in the red
case, which is exactly seen in the fluorescence maps, where only at

the location of a broad green region a fluorescence enhancement
can be observed, but no enhancement is seen at the prosecution
of the mode at higher incident angles.

To give a clear idea of the 3D energy density distribution for
three selected modes, and also to show how well the clusters
match the actual physical fields, Fig. 6 shows full-3D render-
ings61. The images depict multiple periods of the photonic crystal
as a greyish metal-like material, without showing a superspace
material. Figure 6a–c shows top views of the volume-rendered
electric field energy density colour-coded using a heat map, which
is not comparable between the figures. Figure 6d–f shows a closer
view and indicates a random distribution of QDs as bright small
spheres, emitting white light with an intensity proportional to the
field energy density at their specific positions. The QD
distribution is the same for all three images. The columns relate
to three different modes of the Γ− K, TE case, denoted as A, B,
and C. They correspond to clusters 8, 3, and 6, as also marked in
Fig. 5. The modes are the actual solutions from the finite element
solver that have the smallest deviations from the assigned
prototype (i.e., cluster centre), determined using the silhouette
coefficients. Incident angle θ and wavelength λ for each mode are
given in the headings. Note that these images have an illustrative
character, but can be very helpful to imagine the actual physical
situation. Modes A and B are the ones which have been discussed
recently, and it is clearly seen that the former concentrates its
energy at the plateaus, while the latter has high energy densities at
the flanks of the holes. A third type is shown with mode C, which
focusses the energy directly inside the holes. The illustrations in
Fig. 6d–f give a notion of how these modes activate different QDs,
depending on their position. Only a small density of QDs is used
for the images for purposes of visibility, and they are randomly
distributed in a layer that fills the holes and extents 100 nm in z-
direction. Mode A very efficiently excites QDs at the plateaus, just
as expected, while modes B and C do the same at the flanks and
inside the holes, respectively. Consequently, these renderings
completely confirm the results of the clustering approach.

b c

fed

a

Mode A
“plateau mode”

� = 23.1°, λ = 1098.0 nm

Mode B
“flank mode”

� = 9.3°, λ = 1132.5 nm

Mode C
“hole mode”

� = 3.0°, λ = 1084.0 nm

Fig. 6 Full-3D volume renderings of selected modes for the Γ− K, TE configuration. Semi-artistic ray tracing images depicting multiple periods of the
photonic crystal as a greyish material. a–c Top views of the full-3D E-field energy density, colour-coded using a heat map (not comparable between the
figures). d–f Closer views indicate the same random distribution of quantum dots (bright small spheres), emitting white light with an intensity proportional
to the field energy density at their specific positions. The pairs (a, d), (b, e), and (c, f) relate to three different modes of the Γ− K/TE case, denoted as
plateau mode (mode A), flank mode (mode B), and hole mode (mode C), respectively. The modes are the actual solutions from the finite element solver
that have the smallest deviations from the assigned prototype (i.e., cluster centre), determined using the silhouette coefficients. Incident angle θ and
wavelength λ for each mode are given in the headings. The figures use real physical proportions
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Discussion
The aim of the numerical approach presented here is the sys-
tematic identification of suitable leaky modes of nanophotonic
structures for interaction with near-surface emitters. For instance,
(a) a monolayer of emitting species attached at the surface of the
nanophotonic structure is expected to strongly interact with a
leaky mode with shallow field distribution. In contrast, in an
experiment with (b) emitters in a coating on top of the photonic
nanostructure, the interaction with a shallow leaky mode will be
rather small due to the limited spatial overlap of the mode volume
with the emitting material. Here, a leaky mode with an energy
density enhancement in a large volume outside the photonic
nanostructure would be better suited. In a third scenario, (c),
emitters fill the voids of the photonic nanostructure, for example
if they are solved in a liquid solution and dropped onto the
structure. In that case, leaky modes with strong field enhance-
ment inside these voids are expected to cause the strongest effects.
In the chosen data set, the fluorescence enhancement experiment
of PbS quantum dots on a silicon PhC slab in nanohole geometry,
the distribution of QDs resembles a mixture of cases (b) and (c).
The clustering technique revealed that the modes which have the
best spatial overlap with the QD distribution effectively cause the
strongest fluorescence enhancement effects in the measurements.

In the previous study53 we used a selection of a small number
of points for which the field energy distributions were analysed.
The clustering technique not only confirmed the results that were
achieved this way, but also helped to explain complicated details,
e.g., as caused by the superposition of two modes. Therefore, the
clustering approach gave a much more coherent and detailed
explication of the underlying physical phenomena. It emphasises
the interesting parts automatically and systematically, e.g., by
revealing regions of rapidly changing field distributions through
individual clusters, or through large deviations from the assigned
prototype. Moreover, the clustering technique seems to be
applicable to even more complicated cases, e.g., in windows with
more bands for which an analysis using selected points is not
reasonable any more.

The presented technique composed of (i) the field energy
enhancement maps and (ii) the 3D electric field distribution
clustering provides a versatile tool for the analysis and design of
photonic nanostructures for applications that utilise near-field
enhancement effects for increased emission. For any known
distribution of near-surface emitters that should be affected by
leaky modes, optimum values for all relevant parameters can in
principle be determined. It is, e.g., possible to define a wavelength
range for the excitation of the emitters by considering their
absorption properties, and to numerically calculate the field
energy enhancement E+ and field values in 3D for clustering (as
provided in Fig. 2b, c, here). By choosing the mode with the
largest spatial overlap of high field energy with the emitter dis-
tribution from the prototypes (as in Fig. 5), an optimum mode
can systematically be determined. This process can moreover be
repeated for possible geometrical parameters of the photonic
nanostructure, e.g., the lattice constant, slab thickness, or hole
radius. Alternatively, if the geometrical parameters should be
varied extensively, the technique could be applied for an initial set
of geometrical parameters to select a potential mode and to
reduce the wavelength and angle window. Successively, only the
field energy enhancement E+ may be calculated in the scan over
the possible geometrical parameters to determine the absolute
maximum of the enhancement.

The clustering technique is extremely flexible. It is not limited
to uniformly sampled feature spaces as shown in our example
application. It would also have been possible to choose arbitrary
snapshot points in the θ–λ space, e.g., with a higher density in
regions of high field energy enhancement E+. It is further not

limited to the shown number of feature parameters; i.e., we could
have added a variation of the hole diameter or other geometrical
parameters as well. However, the method is even more powerful,
because the trained classifier can be used to classify field dis-
tributions that it has not seen yet, known as prediction. In con-
trast to the clustering itself, this is a computationally cheap
process, and the classifier can even be persistently stored on disk
for later use. To make these considerations more clear, it would
have been possible to choose a smaller number of possibly non-
uniformly sampled points in the θ–λ space for efficient clustering.
The silhouette analysis can be used to make sure that the number
of samples is sufficient to reach an appropriate clustering result.
From this clustering the prototype field distributions can be
derived and the classifier can be stored to disk. Afterwards, a
uniform scan over θ, λ, and other parameters that are expected to
not change the field distributions considerably (e.g., hole dia-
meter, slab thickness, refractive indices, …) could be performed.
The resulting new solutions could then be assigned to the pro-
totypes using the classifier from disk with minimal computational
effort.

Numerous applications could benefit from these optimisation
abilities. In the field of biosensing, photonic nanostructures have
become an important platform for, e.g., label-free biosensing or
for the enhancement of the output of photon emitting tags used
in the life sciences and in vitro diagnostics. A recent review
article39 shows that nanophotonic-enhanced biosensors are yet
extremely relevant, even commercially and potentially on indus-
trial scale. Exploiting leaky modes with large Q-factors enables for
narrow bandwidths (<1 nm) and extremely high sensitivities, e.g.,
for detection of disease biomarkers in serum with concentrations
of ~1 pg ml−1. The numerous applications that are described in
the mentioned review article have in common that the nano-
photonic structure is designed for a very specific mode, i.e., a
specific illumination condition and a determinable distribution of
the molecules/cells/virus particles in question. This is where the
technique presented here could be utilised for a systematic opti-
misation in the design process, and hence to further increase the
sensitivities of related sensors. Photon upconversion62,63 in bio-
medical imaging and solar energy is another application that
could benefit from the discussed all-numerical design abilities.
Recent publications64,65 demonstrate upconversion using thin
emitter layers, which as well could potentially be improved using
specifically tailored nanophotonic structures.

In summary, we have developed a numerical method that
allows to systematically optimise nanophotonic structures per-
taining to the 3D field distribution and field energy enhancement
of modes. The method applies a combination of FEM simulations
and post-processing using clustering. We showcased the model-
ling power of the method by explaining experimentally measured
fluorescence enhancement of QDs on a photonic crystal slab
surface. The method yielded information that was not easily
accessible using, e.g., a visualisation-based analysis for selected
parameter combinations, and which allowed to fully explain the
experimental results. Consequently, the presented technique
could be very useful for applications that utilise effects that
depend on the spatial field distribution of nanophotonic modes,
such as in the fields of biosensing39,63 or spectral conversion in
solar energy62,64–66.

Methods
Finite element simulations. For simulations we use a time-harmonic FEM
Maxwell solver (JCMsuite54) on a 2D periodic unstructured, prismatoidal mesh of
the unit cell. Each simulation uses a distinct plane wave excitation corresponding to
the direction of incidence, wavelength, and polarisation. We assure numerical
convergence by appropriate tests, guaranteeing an accuracy of 1, by comparing the
derived quantities to those calculated in a highly accurate reference solution.
Quantities such as the electric or magnetic field distribution, and therefore field
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energy distributions, are derived from the near-field solutions. Appropriate post-
processes are directly implemented in the used commercial finite element Maxwell
solver. Please consult our previous publication53 for details of the numerical model.

Clustering of electric field data. The clustering is executed on an input matrix X
of shape Ns ×Nf, where Ns is the number of samples and Nf the number of features.
A sample is the solution for a specific set of input parameters, in our case incident
angle θ and wavelength λ. The features, in the present case, are absolute values of
the electric field components Ej with j∈ {x, y, z} for a number of points ri 2 R

3, i.e.,

of the form Ej rið Þ
��� ���. Consequently, if the field is evaluated at Np points, these are Nf

= 3Np features. To avoid exporting the electric field on a full Cartesian grid in 3D,
which would cause huge amounts of data when trying to achieve a reasonable
resolution, data are only exported on the symmetry planes marked in Fig. 1c,
respectively. More symmetry planes could be used as well, but based on these three
planes a reasonable classification can be reached, as tested using smaller data sets
and compared to a full-3D field output. A field pattern of a single simulation holds
data for each of the three spatial directions, and for each component j of the electric
field (altogether a 4D data set). As each sample Xi must be a 1D row vector with
observations of single scalar values x0; ¼ ; xNf �1, it is necessary to flatten these

data sets in always the same way, yielding 1D representations of the fields. The data
are moreover normalised by scaling each sample to unit norm individually. The
field export is performed for each point in each map of Fig. 2b, so that the samples
are unique simulations for a given direction/polarisation combination, wavelength
λ, and incident angle θ. The number of samples for a single map is given by Ns=
Nλ⋅Nθ. To give an expression for the complete input matrix X we abbreviate

Ê i;m;l
j ¼ Ej ri; θm; λlð Þ

��� ���, where the additional indices m= 0 … Nθ and l= 0 … Nλ

have been introduced, and where the hat denotes the absolute value and nor-
malisation. The input matrix then reads

X ¼

Ê 0;0;0
x � � � Ê

Np ;0;0
x � � � Ê 0;0;0

z � � � Ê
Np ;0;0
z

..

.

Ê 0;Nθ ;0
x � � � Ê

Np ;Nθ ;0
x � � � Ê 0;Nθ ;0

z � � � Ê
Np ;Nθ ;0
z

..

.

Ê 0;Nθ ;Nλ
x � � � Ê

Np ;Nθ ;Nλ
x � � � Ê 0;Nθ ;Nλ

z � � � Ê
Np ;Nθ ;Nλ
z

0
BBBBBBBB@

1
CCCCCCCCA
: ð3Þ

For the wavelength and angle resolution, values of 0.5 nm and 0.3° have been used,
respectively. For each clustering procedure the input matrix X had a size of Ns ×Nf

= 47,034 × 8616. This is a comparably large problem size, especially because of the
large feature dimensionality (Nf), so that the procedure took more than 10 h on a
hexa-core workstation with roughly 40 GB of memory consumption.

Gaussian mixture model clustering. Simple clustering techniques, such as the k-
means algorithm67, can be extremely robust, but also have their disadvantages. For
example, k-means assumes that the clusters are circular, i.e., representable by a
(hyper-)sphere in feature space. The centre of this sphere defines the cluster centre
(i.e., prototype), while the radius acts as a hard boundary used to decide which
samples belong to the cluster. In contrast, the GMM67,68 is a so-called soft method.
That is, a score for each cluster is assigned to the samples which account for the
probability that the sample belongs to a specific cluster. In GMM clustering, the
clusters are represented by Gaussian distributions of the dimensionality of the
features space (i.e., Nf).

In general, a superposition of N multivariate Gaussian distributions of the form

pðxÞ ¼
XN
i¼1

ciN iðxÞ ð4Þ

can be used to approximate almost any continuous density to arbitrary accuracy
(this is intuitive with 1D Gaussians, which can fit almost any 1D signal if enough
Gaussians are superimposed). Here, the N iðxÞ are multivariate Gaussian
distributions of the form67

NðxÞ ¼ 1

ð2πÞD=2 ~Σ
�� ��1=2 exp � x � μð ÞT

2
~Σ�1 x � μð Þ

 !
ð5Þ

for a D-dimensional vector x, the D-dimensional mean-vector μ, and the D ×D
covariance matrix ~Σ with determinant ~Σ

�� ��. Equation (4) is called a Gaussian
mixture, the N iðxÞ are called components of the mixture, and the ci are weight
factors. Loosely speaking, the distribution of sample points is fitted using a set of
high-dimensional Gaussians. A GMM can therefore represent much more complex
data sets and can be seen as a generalisation of the k-means algorithm for non-
circular clusters. One can imagine that it would be straightforward to fit the
multivariate Gaussians to a data set for which the labels are known. With
unlabelled data the case is more difficult, and enforces to take into account another
step. In the literature, this problem is commonly denoted as to find out which
(latent) component is responsible for a certain sample, which is somehow a

different way of asking to which cluster the sample belongs. However, it underlines
that the GMM clustering is a probabilistic approach, because it calculates the
probability that the sample was generated by cluster i for all clusters. These
probabilities, which are also called responsibilities, are simply the weight factors ci
of Eq. (4). In the implementation that was utilised here, the cluster assignment is
solved using a method known as expectation-maximisation69,70. This algorithm
starts with a random Gaussian mixture (i.e., random components),which is
typically initialised using a prior application of k-means to improve the
convergence. In the next step it determines for each sample the probability of being
generated by each component of the mixture. Based on these probabilities, the
parameters of the Gaussian distributions are fitted to give the best approximation
of the data by maximising their likelihood67. This process is executed iteratively
and is guaranteed to converge to a local optimum.

Solution quality rating using silhouette coefficients. To give a definition of the
silhouette coefficient, let Xk

i be a sample that was assigned to the cluster k and a(i)
be the average dissimilarity of Xk

i to all other members Xk
j≠i of this cluster. The

measure for the dissimilarity is usually the Euclidean distance. Let d(i, m) be the
average dissimilarity of Xk

i to all members of the cluster m ≠ k and b(i) be the
minimum of d(i, m) for these clusters, i.e.,

bðiÞ ¼ min
m≠k

dði;mÞ:

The cluster m for which this minimum is obtained is called the neighbouring
cluster of Xi. If the number of clusters Nk is >1, we can define the silhouette
coefficient s(i) for the sample Xi by

sðiÞ ¼ bðiÞ�aðiÞ
maxfaðiÞ;bðiÞg

¼
1� aðiÞ=bðiÞ; if aðiÞ<bðiÞ
0; if aðiÞ ¼ bðiÞ
bðiÞ=aðiÞ � 1; if aðiÞ>bðiÞ

0
B@ :

ð6Þ

From this definition it is seen that the silhouette coefficient s is in the range−1 ≤ s ≤
1. Values near+1 indicate that the sample is far away from the neighbouring cluster
and accordingly fits well into its own cluster. A value of 0 indicates that the sample
is on or very close to the boundary between its own and the neighbouring cluster,
and negative values indicate that it might have been assigned to the wrong cluster. A
sorted diagram of all silhouette coefficients can thus be used to visualise the
representation quality of a clustering. In addition, the average silhouette coefficient
for all samples—usually denoted as silhouette score—can be used to compare the
representation quality for different clusterings, e.g., using different Nk values. It
hence even provides a single numeric value for solution quality assessment.

Code availability. The complete and documented Python code to generate the
presented results is available via https://doi.org/10.5281/zenodo.1234734. The code
can automatically download the published data set and comes with an additional
small data set for testing purposes. In addition, interactive Jupyter notebooks are
provided with the code base in order to illustrate the usage and how to change
parameters (including different clustering algorithms).

Data availability
The complete field distribution data generated using FEM simulations is available via
https://doi.org/10.5442/ND000002.
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