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ABSTRACT 

We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium 

based CsxFA1-xPb(I1-yBry)3 perovskite compositions with x = 0–0.3 and y = 0–0.3 under various 

spin-coating conditions. By varying the Cs and Br content, perovskite precursor solution 

concentration, and spin-coating procedure, the occurrence and characteristics of the wrinkle-

shaped morphology can be tailored systematically. Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite layers 

were analyzed regarding their surface roughness, microscopic structure, local and overall 

composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar 

cells (PSCs) with ITO/NiOx/perovskite/C60/BCP/Cu architecture resulted in up to 15.3% and 

17.0% power conversion efficiency for the flat and wrinkled morphology, respectively. 

Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and 

we are able to directly correlate surface topography with PL peak mapping. This is attributed to 

differences in local grain size, while there is no indication for compositional de-mixing in the 

films. We show that perovskite composition, crystallization kinetics, and layer thickness strongly 

influence the formation of wrinkles which is proposed to be related to the release of compressive 

strain during perovskite crystallization. Our work helps to better understand film formation and to 

further improve efficiency of PSCs with widely used mixed perovskite compositions.   
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INTRODUCTION 

Hybrid metal halide perovskite photovoltaics have developed rapidly as is demonstrated by the 

rise in power conversion efficiency (PCE) records of small area solar cells from 3.9% to 22.7% 

within just eight years.1–4 Exceptional optoelectronic properties,5 band gap tunability,6 solution 

processability7 and natural abundance of raw materials promise perovskite solar cells (PSCs) at 

low cost,8 which is particularly attractive for application in photovoltaics. The complementary 

absorption to crystalline silicon make perovskites a suitable candidate for tandem solar cells in 

combination with the established silicon photovoltaic technology.9,10 CH3NH3PbI3 (MAPbI3)-

based perovskite has enabled highly promising PSCs efficiencies,2,11–13 but due to the volatile 

nature of methylammonium (MA) these materials are limited in thermal stability14 and stability 

under illumination,15 and thus long-term stability. Hence, most recent high-performance PSCs 

employ thermally more stable perovskite blends based on formamidinium lead iodide (FAPbI3). 

However, pure FAPbI3 exhibits a yellow photo-inactive δ-phase at ambient temperature,16 and 

therefore MA, cesium, rubidium and bromide have been incorporated to stabilize the photoactive 

α-phase of FAPbI3.
12,16–18 Moreover, perovskites containing cesium have shown improved 

crystallinity, photo stability, moisture tolerance and reduced current-voltage (J–V) 

hysteresis.12,16,17,19 Cesium incorporation also allows band gap (Eg) tuning20–22 with a summary of 

the optical data of a variety of compositions published by some of us recently.6 Frequently 

employed mixed cation/anion perovskites for highly efficient PSCs are the so-called triple cation 

compositions Csx(MA yFA1−y)1−xPb(I1−zBrz)3,
12,16,23,24 or compositions without the volatile MA 

cation such as CsPb(I1−yBry)3
25 and CsxFA1−xPb(I1−yBry)3.

17,26–28 For the latter type of perovskite, 

high solar cell stability and excellent band gap fine tuning has been demonstrated.17,27 Among 

these compositions, Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskites with 1.63 eV band gap have been 

employed in the most efficient monolithic perovskite/silicon tandem solar cells to date.26 

However, little is yet known about the material and thin film related properties. To further 
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understand the structure-function relationship, more analyses of the respective films and solar 

cells fabricated with this composition are needed. In the aforementioned publication by Bush et 

al. AFM images with microscopically textured Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite layers were 

shown.26 Very similar patterns have also been observed by Jacobsson et al.,29 Kim et al.28 and 

Sveinbjörnsson et al.30 for a wide range of MAxFA(1−x)Pb(I1−yBry)3 perovskites. The latter authors 

described the pattern as highly ordered wrinkles, a term that will be adapted here. While the 

origin of this microstructure is subject of current discussion,30,31 textured thin films have received 

great interest for enhancing photovoltaic performance: Micro- and nanostructured substrates or 

photoactive layers increase light scattering and enhance light in-coupling which can improve the 

short-circuit current (Jsc) as demonstrated in thin film silicon32 and perovskite solar cells.33,34 

However, solution-processed deposition of thin charge selective contact layers on textured 

perovskite often results in performance loss from shunts and poor charge extraction.26 Also, the 

film morphology itself plays a significant role in the corresponding performance metrics of 

perovskite solar cells.33,35–38 Thus, we herein investigate key parameters that influence the 

formation of wrinkled perovskite films and compare their optoelectronic properties to perovskite 

layers of the same composition exhibiting a flat morphology. By carefully tuning the film 

processing parameters we can generate deliberately flat and wrinkled films (Figure 1b-g). Most 

recently we reported on the investigation of optical constants and band gaps of flat and wrinkled 

Cs0.17FA0.83Pb(I1–xBrx)3 perovskite layers with x = 0–0.4 by variable angle spectroscopic 

ellipsometry and spectral transmittance.39 That work and the present study were conducted 

simultaneously to a study on the appearance of wrinkles in Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite 

layers by McGehee and coworkers, also published very recently.31 Besides analyzing the origin of 

wrinkle formation we here focus on the impact on perovskite layer morphology on the solar cell 

performance. For this we utilize p–i–n (so called inverted) perovskite solar cells with the 

perovskite absorber sandwiched between nickel oxide as the hole transporting contact and 
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fullerene-C60 as the electron selective contact with the architecture 

ITO/NiOx/Cs0.17FA0.83Pb(I0.83Br0.17)3/C60/BCP/Cu, as shown in Figure 1a. We find that the 

wrinkled perovskite morphology enables higher open-circuit voltage (Voc) and short-circuit 

current (Jsc) than its flat counterpart. To understand the impact of perovskite morphology on solar 

cell performance, we use information from photoluminescence (PL), energy-dispersive X-ray 

diffraction (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). 

 
Figure 1: (a) Schematic illustration of the device architecture of perovskite solar cells fabricated in this work and (b-
g) images of Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite layers deposited under two different conditions (P1 and P2; for 
details see Experimental Section). (b, e) Optical microscope images in transmission mode, (c, f) confocal microscope 
images, and (d, g) scanning electron microscopy images of perovskite layers. 

 

METHODS  

Materials. Chemicals were purchased from TCI (lead(II) iodide 99.99% Pb, lead(II) bromide 

99.99% Pb), Sigma-Aldrich (bathocuproine 99.99%, fullerene-C60 99.9%, ethylenediamine 99%, 

poly(methyl methacrylate) 120,000 Mw, anhydrous chlorobenzene, anhydrous dimethyl 

sulfoxide, anhydrous dimethylformamide), Alfa Aesar (nickel(II) nitrate hexahydrate 99.9985%, 

copper shot 99.999%, ethylene glycol 99%), ABCR (cesium bromide 99.999% Cs, cesium iodide 

99.999% Cs) and Dyenamo (formamidinium iodide 98%), and were used as received. Indium-

doped tin oxide (ITO)-coated glass substrates were purchased from Automatic Research GmbH 
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(25 × 25 × 11 mm, 15 Ω/□, patterned ITO) and Luminescence Technology Corporation (25 × 25 

× 11 mm, 15 Ω/□, full area ITO). 

Perovskite Solar Cell Fabrication. Planar p–i–n perovskite solar cells were fabricated as a 

layered stack of glass/ITO/NiOx/Cs0.17FA0.83Pb(I0.83Br0.17)3/C60/BCP/Cu. Patterned ITO-coated 

glass substrates were cleaned in acetone, detergent (Mucasol 2 vol% in water), water and 

isopropanol in an ultrasonic bath for 15 min, respectively. Before layer deposition the substrates 

were dried in a N2 stream and treated in an UV ozone cleaner (FHR Anlagenbau GmbH, UVOH 

150 LAB) for 15 min. The NiOx layer was deposited by a sol-gel method, closely following the 

procedure from You et al.40 A 1 M solution of nickel(II) nitrate hexahydrate in ethylene glycol 

with an equimolar amount of ethylene diamine was prepared and stirred for 10 min. After 

filtration through a 0.45 µm PVDF filter, the solution was spin coated onto ITO-coated glass at 

8000 rpm for 60 s with an acceleration time of 3 s in air. The wet film was dried at 100 °C for 

10 min followed by oxidation at 300 °C for 1 h in ambient conditions. The substrates were left to 

cool down and quickly transferred into a glovebox for deposition of all following layers under 

dinitrogen atmosphere. Cs0.17FA0.83Pb(I0.83Br0.17)3 layers were deposited in close analogy to 

previously reported procedure for this perovskite composition.17,26 A 0.9 M 

Cs0.17FA0.83Pb(I0.83Br0.17)3 precursor solution was prepared by dissolving cesium bromide 

(57.9 mg, 0.153 mmol, 0.17 equiv.), formamidinium iodide (128.5 mg, 0.747 mmol, 0.83 equiv.), 

lead(II) bromide (56.2 mg, 0.17 equiv.) and lead(II) iodide (344.4 mg, 0.747 mmol, 0.83 equiv.) 

in a mixture of dimethylformamide and dimethyl sulfoxide (4:1 volume ratio, 880 µL). The 

precursor solution was shaken at 60 °C for 30 min and left to cool down to ambient temperature 

before use. Higher or lower concentrated perovskite precursor solutions were prepared in the 

same way by adjusting the volume of solvent mixture added. Two deposition procedures were 

used to obtain a perovskite layer with flat surface morphology (Procedure 1, P1) and wrinkled 

surface morphology (Procedure 2, P2). P1: Perovskite precursor solution (100 µL) was spread on 
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the substrate and spun at a single-step process with open spin coater lid, 4000 rpm for 30 s with 

an acceleration time of 1 s; during this process chlorobenzene (150 µL) was dripped from 1 cm 

distance on the center of the spinning substrate after 25 s. The perovskite layer was directly 

transferred on a hot plate for annealing at 100 °C for 20 min. P2: Perovskite precursor solution 

(100 µL) was spread on the substrate and spun at a two-step process with closed spin coater lid, 

1000 rpm for 10 s with an acceleration time of 1 s followed by 6000 rpm for 30 s with an 

acceleration time of 3 s; during this process chlorobenzene (150 µL) was dripped from 1 cm 

distance on the center of the spinning substrate after 42 s. The spin coating time is 40 seconds 

plus 4 seconds acceleration; in total 44 s. Antisolvent quenching was done 2 s before the end of 

spin-coating, hence after 42 s. The perovskite layer was directly transferred on a hot plate for 

annealing at 50 °C for 1 min, then on a second hot plate at 100 °C for 20 min. After cooling to 

ambient temperature, the electron selective layer (fullerene-C60), hole blocking layer 

(bathocuproine) and back electrode (Cu) were deposited in a thermal evaporator (M. BRAUN 

GmbH, MB-EcoVap) at a base pressure of < 10−6 mbar. First, 25 nm fullerene-C60 was vacuum 

deposited at a source temperature of 370 °C and rate of 0.3 Å/s, then 6 nm BCP was deposited at 

a source temperature of 125 °C and rate of 0.5 Å/s, finally, 100 nm copper was deposited through 

a shadow mask, to define six active areas of 16 mm2 on each substrate, at a rate of 0.1 to 1.0 Å/s. 

Thin Film Characterization.  UV/vis/NIR Spectroscopy: Reflectance and transmission spectra 

were recorded between 300 and 850 nm in 4 nm steps using a PerkinElmer Lambda 1050 

UV/vis/NIR spectrometer, calibrated with a white Spectralon. The illumination beam size of this 

setup was 3.5 × 3.5 mm2. Microscopy: Optical microscope images were recorded on a Leitz 

DMRX in transmission mode equipped with Canon EOS 700D camera. SEM images were 

recorded using a Hitachi S4100 or ZEISS Auriga 60 at 5 kV acceleration voltage and 10k×, 30k× 

and 50k× magnification. Grains sizes and layer thicknesses were determined using the software 

“ImageJ”. Surface analysis was performed using a Park Systems XE-70 atomic force microscope 
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and a KEYENCE VK-X laser scanning confocal microscope. Surface images obtained from both 

methods were flattened by a polynomial background subtraction. Root mean square roughness Sq 

of the measured surface with an area A was calculated from 

�� = �1���	
�, 
����
� . 
Photoluminescence measurements: Static PL spectra were measured on encapsulated perovskite 

layers deposited on soda lime glass substrate or ITO-coated glass substrate with NiOx layer using 

an Andor SR303i-B spectrometer equipped with a silicon detector DU420A-BR-DD (iDus) after 

excitation with a 445 nm CW-laser (~20 mW/cm2), spot size ~100 µm2. Transient PL with 

100 µm2 excitation spot size was acquired using a TCSPC system (Becker&Hickl SPC130 with a 

multichannel detector: PML-16-C-1) after excitation with a PicoQuant PDL800B at 470 nm with 

a typical fluence as denoted between 70 and 2100 nJ/cm2 at a repetition rate of 500 kHz. PL 

lifetime of the obtained data was calculated by using biexponential decay function (1); the mean 

lifetime τm was calculated using equation (2) with τ1 and τ2 being the fast and slow time 

component, respectively:41 


��																						�
�� = ����� �− ���� + ����� �− ���� 

��																					� 	= ����� + ��������� + ����  

Locally resolved PL maps were recorded on perovskite samples deposited on ITO-coated glass 

substrate containing a thin PMMA film on top of the perovskite layer using a fiber coupled 

confocal microscopy setup. Excited with a diode laser (635 nm) with 1 µm2 spot size, applying a 

continuous-wave photon flux of 1.7×1023 photons/(s cm2), the emitted light was detected 

spectrally resolved using a diffraction grating (600 g/mm) and detected by a silicon charge 
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coupled device (Si-CCD). Optical components in the light path from laser to detector: laser band-

pass filter 635 nm, cold-light mirror, sample, focusing lens with a numerical aperture of 0.9, cold-

light mirror followed by 650 nm long-pass filter for suppressing spurious laser light, Ø 25 µm 

pinhole. 

 

X-ray photoelectron spectroscopy: Measurements were conducted using an Al-Kα (1486.6 eV) 

source for excitation. The samples were transferred into the XPS setup in a dinitrogen filled 

container, which was directly attached to the XPS setup and evacuated. Therefore the samples 

were not exposed to air prior XPS measurements. All signals were fitted using Voigt peaks (15% 

Gaussian, 85% Lorentzian) and a linear background. The full-width at half maximum was the 

same for all peaks within the same orbital, with the exception of Ni 2p. For Ni 2p only the area of 

the Ni 2p3/2 was fitted. The O 1s signal was fitted with three signals, one signal at 529.2 (NiO), a 

second signal with a binding energy of two electron volts above this one (NiOH), and a third 

signal at about three electron volts above the main peak. Br 3d was fitted using one signal for the 

Br 3d5/2 and one for the Br 3d3/2. The distance between these two was fixed to 1.1 eV and the area 

ratio to 0.67. I 3d, Cs 3d and Pb 4f were also fitted with two signals each for the respective 7/2 

and 5/2, or 5/2 and 3/2 states. Area ratios and distances were not fixed, because the area ratios 

were within error range of 0.67 for the d-orbitals and 0.75 for the f orbital. X-ray diffraction: 

XRD pattern were recorded on a Bruker D8 for energy dispersive thin film analysis using grazing 

incidence geometry. The instrument is equipped with a Cu-anode (Kα1 = 1.54060 Å and Kα2 = 

1.54443 Å), a Göbel mirror and a Sol-X energy dispersive single counter. XRD measurements 

were carried out in the 2θ range from 10° to 70° in 0.015° steps. The samples were static during 

the measurements to avoid extinction caused by a preferred direction of crystal growth.  
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Solar Cell Characterization. All current density–voltage (J–V), MPP and EQE measurements 

were undertaken in an MBRAUN N2-filled glovebox with less than 0.1 ppm O2 and H2O. J–V 

measurements were conducted using an Oriel class ABB sun simulator, mimicking the AM1.5G 

spectrum with an intensity of 100 mW/cm2 adjusted by the short-circuit current of a calibrated 2 

× 2 cm silicon solar cell (Fraunhofer ISE). The active area of 0.16 cm2 was defined by the 

overlap of orthogonal ITO and copper strips, both 4 mm in width. J–V curves of the solar cells 

were measured with a digital source meter (Keithley model 2400) in a two-wire configuration in 

two consecutive sweeps from −0.2 to 1.2 V and immediately afterwards backward from 1.2 to 

−0.2 V. The standard scan rate was 200 mV/s (voltage steps 0.02 V, settling time 50 ms, 

integration time 50 ms), but was varied between 10 mV/s and 10 V/s (for details see Table S2) 

for the scan rate dependent J–V measurement. For MPP tracking measurements the power output 

of a solar cell was continuously feedback controlled using homemade software. Starting at the 

voltage of the MPP of the backward J–V scan at 200 mV/s, steps of +10, 0, −10 mV were added 

to the actual voltage, while the current density of the device was traced at each operating point 

for 1 s. The bias point with the highest average power output during the last 0.5 s of each scan 

was then selected as the new MPP for the subsequent iteration. The external quantum efficiency 

(EQE) was measured using an Oriel Instruments QEPVSI-b system with a Xenon arc lamp 

(Newport 300 W, 66902) chopped at 35.5 Hz and a monochromator (Newport Cornerstone 260). 

The illumination beam size on the sample was 2.5 × 2.5 mm2 and measurements were performed 

in a wavelength range from 300–850 nm with 10 nm steps, controlled by TracQ-Basic software. 

The EQE was measured without background illumination or applied bias voltage. 
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RESULTS AND DISCUSSION 

Morphology Control of the Perovskite Layer 

Perovskite layers were deposited by spin-coating of a precursor solution containing cesium iodide 

or cesium bromide, formamidinium iodide, lead(II) iodide and lead(II) bromide in DMF:DMSO 

(4:1), followed by drop-quenching with chlorobenzene (CBZ) and annealing at 100 °C in close 

analogy to previously reported procedures.12,17,26 Although this method allows the deposition of 

continuous pin-hole free perovskite layers, we observed macroscopically matt and 

microscopically textured surfaces in contrast to shiny flat surfaces typically obtained with 

MAPbI3. In the following we will discuss the influence of perovskite precursor composition, 

processing parameters, and perovskite precursor concentration on the resulting perovskite layer 

surface morphology after annealing. 

Perovskite precursor composition 

First, the formation of wrinkles was investigated by varying the composition of the perovskite 

precursor solution with respect to the ratio of Cs:FA and Br:I in CsxFA1−xPb(I1−yBry)3. Two series 

of CsxFA1−xPb(I1−yBry)3 perovskite layers with (1) x = 0–0.30 and y = 0.17 and (2) x = 0.15 and 

y = 0–0.30 were fabricated. In order to compare purely composition dependent changes, the 

perovskite precursor concentration (0.9 M) and processing parameters for these two series were 

kept constant (spin coating at 4000 rpm for 30s, CBZ drop-quenching after 10 s, annealing at 

50°C for 1 min and 100 °C for 10 min). Figure 2 displays the root mean square (RMS) surface 

roughness that was obtained from confocal microscopy images (see Figures S1 and S2). We 

could find significant composition induced changes of the film roughness, i.e. wrinkle formation. 

In absence of either Cs or Br, such as FAPb(I0.83Br0.17)3 and Cs0.15FA0.85PbI3, macroscopically 

shiny and microscopically flat (RMS = 32–43 nm) perovskite layers were obtained. These RMS 
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surface roughness values are slightly higher than 26.3 nm previously reported for solution 

processed flat MAPbI3 layers.42 In comparison, ultra-smooth MAPbI3 layers with 8–12 nm RMS 

surface roughness were obtained using Pb(OAc)2 as lead precursor,43 while employing a 

combined gas-assisted and solvent drop-quenching method resulted as little as 2 nm RMS surface 

roughness.44 In our study, wrinkles developed only if both two cations (Cs and FA) and two 

anions (I and Br) were present in the perovskite, in other words the combination of Cs and Br in 

FAPbI3-based perovskite seems to induce the textured morphology. This can be seen by the 

strong increase in RMS surface roughness in Figure 2 when changing the composition regarding 

Cs content (dark grey bars) and Br content (orange bars). Generally, the surface roughness 

correlated with the concentration of Cs and Br. However, in comparison, cesium (RMS = 125 nm 

at 30 mol% Cs and 15 mol% Br) had stronger impact on the formation of wrinkles than bromide 

(RMS = 62 nm at 17 mol% Cs and 30 mol% Br). As all other fabrication parameters were kept 

constant, Cs and Br obviously influence the crystallization behavior of perovskite. Zhou et al. 

observed acceleration of the MAPb(I1−xBrx)3 crystal growth with increasing bromide content.45 

As most basic explanation they suggested faster ion diffusion of bromide versus iodide based on 

the smaller ion radius of bromide. However, besides ion diffusion, crystal growth depends mainly 

on the availability of multinuclear lead(II) halide complexes which act as building blocks for bulk 

perovskite crystallites.46 From a coordination chemistry perspective, bromide forms more stable 

complexes with lead(II) than iodide. This has been reported by Kamat and coworkers for [PbX3]
− 

and [PbX4]
2− with X = I, Br.47 The impact of Cs+ on perovskite precursor solution chemistry is 

yet unknown, but it may also shift the dynamic equilibrium of lead(II) halide species towards 

higher-order lead(II) halide complexes and thereby accelerate crystallization. Nevertheless, at 

low content (< 15 mol%; relative to lead) bromide alone cannot be made responsible for wrinkle 

formation, but the combination of both Br and Cs in CsxFA1−xPb(I1−yBry)3 seems to induce this 

unusual morphology.  
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To examine the formation of wrinkles and impact on solar cell performance, we used perovskite 

precursor solution with Cs0.17FA0.83Pb(I0.83Br0.17)3 stoichiometry for all further experiments. This 

established composition is among the most relevant for perovskite single junction and tandem 

solar cells and allowed us to compare optoelectronic data of thin films and photovoltaic data of 

solar cells with the literature.26 

 

Figure 2: Root mean square (RMS) surface roughness obtained from confocal microscopy images of 
CsxFA1−xPb(I1−yBry)3 perovskite films (for images see Supporting Information, Figure S1 and S2) containing between 
0 and 30 mol% bromide and cesium (relative to lead). 

 

Processing parameters 

To study the effect of perovskite layer morphology on optoelectronic properties and on the 

performance of solar cells, we developed two processing procedures for the given 

Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskite composition. Optical, confocal and scanning electron 

microscopy (SEM) images of both perovskite morphologies are shown in Figure 1b-g. The first 

procedure, P1, yielded layers with flat morphology and rather smooth surface topography. The 

second procedure, P2, enabled a wrinkled morphology with clearly visible surface features as 

highlighted by the microscope images. The main difference between both procedures is a solvent-
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poor atmosphere (open spin coater lid) and quick acceleration (4000 rpm, ramp 1 s) for P1, which 

resulted in the flat morphology, and a solvent-rich atmosphere (closed spin coater lid) and slow 

acceleration (two-step, 1000 rpm, then 6000 rpm) which generated the wrinkled morphology. In 

P2, two-step annealing was applied to obtain more uniformly structured perovskite layers. One 

step annealing equivalent to P1 also gave wrinkles, but uniformity in surface roughness was 

much higher using two-step annealing. The same two-step annealing was also tested with P1 

which lead to a slightly reduced device performance but it had no effect on the morphology. For 

more processing condition details see Experimental Section.  

To further analyze the different films, the layer thickness was determined from SEM images 

(Figure S3) and RMS surface roughness from confocal microscopy images (Figure S4a,b). The 

wrinkled perovskite morphology varied significantly in layer thickness between 500–1500 nm 

with RMS surface roughness of 250 nm. The flat morphology revealed a more uniform layer 

thickness of 290–380 nm and RMS roughness of 43 nm. Grain sizes of both samples were found 

to be relatively similar in the range of 50–400 nm, although cross-sectional SEMs showed much 

larger grains in the area of the wrinkles (see Figure S11). The grain size distribution in wrinkled 

perovskites is therefore spatially non-uniform. When following the perovskite film formation of 

P1 in comparison to P2 by eye, there was no visible difference in morphology after quenching 

with the anti-solvent chlorobenzene. However, within the first seconds of annealing the 

perovskite layer quickly developed a matt surface in case of P2, independent of the annealing 

temperature applied (> 50 °C). Formation of the flat shiny surface was observed on the same time 

scale employing P1. Notably, the wrinkled perovskite morphology seems to be energetically 

favored as this structure developed under the vast majority of processing conditions, although 

with varying height and lateral dimensions. Indeed, when adjusting the color scale of the confocal 

microscope image of the flat perovskite morphology (Figure S4b), also here small wrinkle-like 

pattern become visible (Figure S4e). 
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Perovskite precursor concentration 

Another parameter found to strongly influence the perovskite layer morphology is the precursor 

concentration. Two series of perovskite layers were deposited from perovskite precursor 

solutions with concentration between 0.77–1.31 M using P1 and P2, and their microstructure was 

analyzed by optical microscopy (Figure S5). All perovskite layers of these series were also tested 

in solar cells, performance data (PCE, Jsc, Voc, and FF) are shown in Figure S6. Generally, the 

width and height of wrinkles, i.e. perovskite surface roughness, in either deposition procedure 

significantly increased with perovskite precursor solution concentration. When the procedure for 

flat films P1 was employed, significant wrinkles developed at perovskite precursor solution 

concentration approximately larger 1 M. Therefore, the flat perovskite morphology is limited to 

precursor solutions with c < 1 M, equivalent to approximately d < 450 nm layer thickness. As the 

wrinkled morphology resulted in the highest device efficiency at around 0.9 M (Figure S6a), this 

concentration will be used as standard for both procedures in the following to give a fair 

comparison between both procedures. Note that no major difference in microstructural 

morphology, surface roughness and wrinkles, was observed when the perovskite film was 

crystallized on glass, polished silicon wafer, ITO, NiOx, or PTAA. Thus, the substrate 

morphology, wettability thereof, and surface energy do not have a major influence on the 

crystallization behavior of this perovskite composition, meaning that the findings presented here 

are rather fundamental. 

Summing up the morphological analysis, the surface roughness of CsxFA1−xPb(I1−yBry)3 

perovskite layers with cesium and bromide content below 30 mol% (relative to Pb) is influenced 

by the perovskite precursor solution composition and concentration, and spin-coating parameters. 

From the experiments we can conclude the following four aspects: first, the formation of 

wrinkles in CsxFA1−xPb(I1−yBry)3 perovskite layers is strongly dependent on the content of 
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bromide and cesium, but to a smaller extent on that of bromide. Second, crystallization dynamics 

of perovskite precursor solutions with Cs0.17FA0.83Pb(I0.83Br0.17)3 composition tends to favor the 

wrinkled morphology, independent of substrate. Third, the perovskite surface roughness 

correlates with concentration of the perovskite precursor solution, which translates to layer 

thickness. Finally, the formation of wrinkles is suppressed by process P1, because quick 

rotational acceleration in an “open” environment (fast solvent evaporation) and early CBZ 

quenching yield a quick crystallization of a thin intermediate phase perovskite layer, which 

defines the final morphology. Interestingly, the phenomenon of wrinkled thin films on glass 

substrate is rare but commonly observed for sol-gel deposited ZnO layers.48,49 In this case the 

folds develop during annealing of the wet precursor layer if the temperature is ramped up slowly. 

Furthermore, spinoidal decomposition by demixing of two phases has resulted similarly 

structured films of binary alloys and polymer blends.50,51 However, we could not find any 

compositional inhomogeneity of the perovskite layer by global and local X-ray techniques (see 

sections below). Sveinbjörnsson et al., who observed very similar morphological pattern in 

MA0.15FA0.85Pb(I0.85Br0.15)3 perovskite, suggested relaxation of strain in the perovskite precursor 

layer to be responsible for wrinkle formation based on different thermal expansion coefficients of 

perovskite and glass substrate.30 In detail, they spin-coated perovskite solution on warm glass 

substrate and proposed that compressive strain is induced by cooling from solvent evaporation 

and injection of chlorobenzene. Our observations point to wrinkle formation during heat-up of 

the samples in the annealing step, a typical scenario for compressive strain built-up. Another 

possible source of compressive strain is volume expansion during perovskite crystallization from 

the Lewis base solvent-rich (DMSO, DMF) intermediate perovskite phase.31,46,52 Independent of 

the exact origin of strain, any strain relaxation in a viscoelastic thin film, such as the semi-

crystalline solvent-rich perovskite precursor phase might be described, can lead to plastic 

deformations, while in highly crystalline layers cracks would most likely occur.53 Whether 



 17

deformations take place depends on the critical thickness of a thin film, as described in Thouless’ 

strain model.53 Briefly, thin layers withstand higher elastic strain than thick layers, which is in 

accordance with our observations (see concentration series in Figure S5). The effect of wrinkle 

formation is therefore suggested to be material and layer thickness dependent, which in turn 

translates to dependence on the chemical composition, precursor concentration and spin-coating 

speed, as has been demonstrated above. Thus, our findings point to the formation of the wrinkles 

influenced by compressive strain which is affected by composition, crystallization kinetics and 

layer thickness. The classical MAPbI3 perovskite may not crystallize with wrinkled morphology 

because of lower strain during formation. We assume Cs (and Br) to have a significant influence 

on the material properties of FAPbI3-based perovskites. The exact formation mechanism of 

wrinkles of mixed halide perovskites cannot be clarified without detailed in-situ film formation 

studies and data on the elastic properties on this perovskite composition, which is beyond the 

scope of this paper. Our findings are supported by work from Bush et al, who very recently 

suggested release of in-plane compressive strain during the intermediate phase of perovskite film 

formation to be responsible for wrinkle formation in Cs0.17FA0.83Pb(I0.83Br0.17)3 layers.31 

In order to analyze the impact of perovskite film morphology on solar cell performance, we 

processed p–i–n (so called inverted) perovskite solar cells with the structure as explained above 

and shown in Figure 1a. We chose this device design, as inverted devices show typically less 

pronounced hysteresis, it was previously successfully integrated into perovskite/silicon tandem 

architectures,26 and also as the conformally grown top electron contact implemented here enables 

a fair comparison between different surface topographies. As hole selective contact, we utilized a 

~15 nm thin layer of NiOx deposited by sol-gel method following the approach from You et al.40 

Figure S7 depicts atomic force microscopy images of NiOx on ITO-coated glass (RMS = 3.7 nm) 

compared to the bare ITO/glass substrate (RMS = 2.4 nm). X-ray photoelectron spectroscopy 

(XPS) revealed excellent agreement of the Ni 2p3/2 and O 1s core level spectra (Figure S8) with 
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the literature (Table S1). The O 1s spectrum showed a comparatively low content of hydroxide 

and oxyhydroxide species at a binding energy (BE) of 531.1 eV.54 The O 1s peak at 532.4 eV can 

be assigned to nickel hydrate or organic species containing oxygen,55 which is both similarly 

likely considering the use of hygroscopic ethylene glycol in the sol-gel deposition process in air. 

However, water in ALD deposited NiOx has also been reported at 533.4 eV BE.56 Irrespective of 

the exact nature of the O 1s peak at 532.4 eV, XPS data indicate a high quality NiOx layer with 

Ni 2p3/2 and O 1s spectra comparable to those of ALD deposited NiOx which enabled 16.4% 

PCE perovskite solar cells.56 On top of the hole selective layer, perovskite was deposited using 

P1 or P2, as described before, and the solar cells were completed with thermal evaporation of 

fullerene-C60, bathocuproine (BCP), and Cu forming the electron contact. Figure 3a displays the 

J–V curves under simulated AM1.5G illumination of the best devices processed according to 

procedure P1 (blue data) in comparison the devices with wrinkled perovskite morphology when 

applying P2 (red data). The J–V curves were recorded in both scanning directions from positive 

to negative bias (backward scan) and from negative to positive bias (forward scan). Both device 

types displayed negligible hysteresis at scan rates between 10 mV/s and 10 V/s (Figure S9 and 

Table S2) and stabilized power outputs very close to the respective J–V scans, as can be seen by 

maximum power point (MPP) tracking over five minutes (inset in Figure 3a) and by the open 

circles in the J–V scan. Figure 3b highlights the statistical distribution of 76 flat and 99 wrinkled 

solar cells together with Gaussian fits to the distribution which confirm the higher efficiency of 

devices with wrinkled perovskite morphology. The performance parameters of all devices are 

shown in Figure 3c and summarized as median and champion values in Table 1. The higher 

efficiency for wrinkled over flat films is realized by slightly enhanced Jsc from 20.1 to 

21.0 mA/cm², slightly enhanced FF from 71.7 to 72.8%, and significantly enhanced Voc from 0.88 

to 1.00 V. The resulting efficiencies are 12.8 to 15.3% on median average and 14.7 to 17.0% at 

best for flat and wrinkled devices, respectively. We note that the overall efficiency is constrained 
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by the Voc that is limited here to below 1.05 V. It has been recently shown that utilizing other hole 

transporting contact materials such as PTAA23,57,58 or doped NiOx layers enable higher Voc 

potentials.59–61 Thus, to our best knowledge the champion PCE of 17.0% presented here is among 

the best for mixed halide perovskite solar cells employing a non-doped and unmodified NiOx 

contact layer presented so far.62  

 

 

Figure 3: (a) J–V characteristics under simulated AM1.5G illumination for the best perovskite solar cells with flat 
(blue data) and wrinkled (red data) perovskite morphology in forward (−0.2 to 1.2 V; dashed lines) and backward 
(1.2 to −0.2 V; solid lines) scan direction at 0.2 V/s scan speed. Open circles in the respective color mark the MPP 
after 60 s of MPP tracking measurements (see inset). (b) Histogram of the PCE of devices with flat (blue columns) 
and wrinkled (red columns) perovskite morphology obtained from J–V measurements in backward scan direction. 
Blue and red lines represent Gaussian fits of the respectively colored data. (c) Statistical analysis of photovoltaic 
parameters from J–V measurements in forward and backward scan direction of 76 solar cells with flat perovskite 
morphology (blue data) and 99 solar cells with wrinkled perovskite morphology (red data). Boxes show range of 25–
75% probability with median line, whiskers represent range of 10–90% probability. 
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Table 1: Parameters extracted from current–voltage characterization in backward scan direction at 0.2 V/s scan 
speed under simulated AM1.5G illumination of 76 solar cells with flat perovskite morphology and 99 solar cells with 
wrinkled perovskite morphology. The reported Jscs are from J-V measurements, the values presented in brackets are 
from wavelength-integrated EQE × AM1.5G illumination spectra. 

Morphology  Voc  
[mV]  

Jsc (Jsc-EQE) 
[mA/cm2] 

FF  
[%]  

PCE 
[%]  

Flat Champion 968 20.4 (20.2) 74.4 14.7 

 Median 881 20.1 (20.2) 71.7 12.8 

Wrinkled  Champion 1042 21.8 (21.2) 75.0 17.0 

 Median 999 21.0 (21.1) 72.8 15.3 

 

To understand the changes in performance metrics we analyzed the external quantum efficiency 

(EQE) and the optical features of both perovskite absorber morphologies and summarized the 

data in Figure 4. From the SEM cross section displayed in Figures S3 we observed that the 

average perovskite film thickness is much higher for the wrinkled film with thicknesses up to 

1.5 µm at the wrinkle position. Thus, it is reasonable that the higher Jsc for the wrinkled solar 

cells can be attributed to higher absorption in the perovskite films. Figure 4a shows the EQE 

spectra for various flat and wrinkled films. Especially in the long wavelength range, where the 

perovskite absorption is weaker,63 the EQE of the wrinkled films is higher. The Jsc-EQE from the 

integrated EQE spectra (Table 1) nicely fit to the Jsc measured under simulated AM1.5G 

illumination. Thus, the enhancement in Jsc from flat to wrinkled perovskite morphology is a 

purely optical feature of higher absorption. This is also reflected by the film absorption (Figure 

4b) which was calculated from transmission and reflection spectra recorded on flat and wrinkled 

perovskite films on ITO-coated glass. At longer wavelengths between 500 nm and the respective 

band-gap edge around 750 nm, the thicker, wrinkled films absorb more light. Therefore, these 

films are able to generate on average approximately 1 mA/cm² more, as it was found from the J–

V scans. Thus, we analyzed the different device stacks by optical simulations. In the simulation, 

we only consider flat interfaces and use an average perovskite layer thickness (for the wrinkled 
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case) to quantify the effect of possible light trapping as deviation between simulation and 

experiment. Figure S10 shows the simulation results. First, to reproduce the minor interference, 

we had to exclude/reduce coherence in the perovskite absorber layer in the simulation, especially 

for the flat films, as here interference is more visible due to the thinner film thickness. Therefore 

reduction of coherence caused by the lateral difference in film thickness is even more pronounced 

in the wrinkled films, though not visible in the EQE due to the high absorption of the thicker 

film. Second, in accordance with the experimental reflection and absorbance data, the simulated 

EQE is only enhanced for wavelength above 550 nm wavelength for the thicker wrinkled films. 

Thus, the slightly higher EQE found in Figure 4a in the wavelength range between 350 and 500 

nm is most likely caused by slightly higher collection efficiency for the wrinkled film which is in 

agreement with the Urbach energy39 and PL lifetime (see below). Third, the amount of 

photocurrent enhancement found for the thicker (wrinkled) films in the simulation matches 

quantitatively to the experiment with a slightly higher EQE measured between 600 and 750 nm 

wavelength as compared to the simulation for the wrinkled case. Consequently, most of the 

photocurrent gain measured for wrinkled films is originated in the thicker (average) absorber 

layer and only marginally by the wrinkled interfaces. This can be further confirmed by 

considering our recent results, where we have shown that sinusoidal textures can significantly 

enhance the photocurrent by 1 mA/cm² in both sub-cells of perovskite/silicon tandem solar cells 

for aspect ratios of 0.5.64 The wrinkles formed here can in first order also be approximated by 

sinusoidal functions. However, the aspect ratio for the wrinkles formed here is rather small and in 

the order of 0.025 to 0.1. With that, the photocurrent gain would rather be minor in the order of 

0.1 mA/cm² over fully flat surfaces in the tandem solar cell when surface is only textured by 

wrinkles on the µm scale and nano-roughness due to the perovskite grains is neglected.64 

Nonetheless, the ability to reduce interference, especially for the NIR wavelength region, due to 

the wrinkles will potentially play a more significant role in optimized perovskite/silicon tandem 
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devices with thicker perovskite layers (>1 µm) that need to be implemented to generate current 

matching when higher perovskite band-gaps are utilized.65  

 

 

Figure 4: (a) External quantum efficiency (EQE) spectra of solar cells with flat (blue data, 5 devices, average 
integrated Jsc = 20.2 ± 0.3 mA/cm2) and wrinkled (red data; 5 devices, average integrated Jsc = 21.1 ± 0.1 mA/cm2) 
perovskite morphology. (b) UV/vis/NIR absorption, transmission and reflection spectra of perovskite layers with flat 
(blue lines) and wrinkled morphology (red lines). 

Interestingly, we measured a significant improvement of more than 100 mV (on average) in Voc 

with the wrinkled formation indicating differences in recombination at either the perovskite/C60 

or the NiOx/perovskite interface, or within the bulk of the perovskite absorber. Recently, it was 

shown that inserting insulating layers in between the perovskite and fullerene-C60 enable a much 

higher open circuit voltage due to suppression of non-radiative recombination.23 However, the 

voltage here appears to be mainly limited from the NiOx/perovskite interface as typical voltages 

with organic p-type polymer such as PTAA as the hole transport layer enabled open circuit 

voltages above 1.1 V.23 Changes in valence band energy at the NiOx/perovskite interface have 

been reported for differently synthesized NiOx
59–61 or surface modified NiOx,

66,67 therefore the 

exact band alignment and surface recombination at this interface might affect the Voc 

enhancement for the wrinkled over the flat films here. To analyze if the changed optoelectronic 

properties are causing the voltage change, we studied the photoluminescence (PL) of films 

processed with P1 and P2 on ITO-coated glass substrate with NiOx layer and on blank soda lime 



 23

glass. Steady-state PL spectra were recorded for both perovskite morphologies (Figure 5a) with 

peak maxima at 1.60 eV for the flat and 1.62 eV for the wrinkled perovskite. In comparison, a 

band gap of 1.63 eV for both perovskite morphologies was obtained from (αhν)2-plots of the 

optical absorption data assuming a direct allowed band gap (Figure S11). A more detailed 

analysis of the absorption edge by variable angle ellipsometry revealed slightly higher Urbach 

energies for flat CsxFA1−xPb(I1−yBry)3 perovskite layers indicative of somewhat higher lattice 

disorder.39 Small differences in the quality of bulk perovskite material of flat and wrinkled 

samples were also reflected in PL lifetime. Charge carrier lifetimes were obtained by time-

resolved photoluminescence (TRPL) spectroscopy of perovskite layers on glass/ITO/NiOx 

(Figure 5b) and soda lime glass (Figure 5c) using biexponential decay fits.68 The mean TRPL 

lifetimes τm of the neat layers on glass substrate show a similar decay time, 173 ns for the flat and 

203 ns for the wrinkled films at 330 nJ/cm2 excitation fluence (Table 2). For comparison, TRPL 

data with 70 and 2100 nJ/cm2 excitation fluence were also recorded and are shown in Figure S12. 

Generally, the TRPL signal of all samples with wrinkled perovskite morphology decayed slower, 

suggesting lower non-radiative trap-assisted recombination. Even more evident, in the case with 

the NiOx hole-transport layer present, the TRPL signal of flat perovskite samples decays much 

quicker than on glass, consistent with a higher recombination at the HTL/perovskite interface.69,70 

We assume this to affect, at least partially, the ~100 mV lower average Voc measured for devices 

with flat perovskite morphology. Perovskite deposition procedure P1 obviously does not promote 

formation of a suitable NiOx/perovskite interface for high Voc devices.  
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Figure 5: PL data of perovskite layers with flat (blue data) and wrinkled morphology (red data) on glass/ITO/NiOx 

(a, c) and soda lime glass (b) excited at 445 or 470 nm: (a) Steady-state PL (b, c) time-resolved PL decay curves at 
330 nJ/cm2 excitation fluence. 
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Table 2: Time constants of charge carrier lifetimes obtained by biexponential decay fits of TRPL data of perovskite 
layers with flat and wrinkled morphology on soda lime glass and glass/ITO/NiOx substrate (Figure 5). τm is the 
averaged time constant, τ1 the fast and τ2 the slow component.  

Perovskite 
Sample 

Substrate τm [ns] τ1 [ns] τ2 [ns] 

Flat Glass 173 32 187 

 Glass/ITO/NiOx 78 15 94 

Wrinkled  Glass 203 14 213 

 Glass/ITO/NiOx 210 24 236 

 

To further illustrate the correlation between PL peak energy and morphology, using a confocal 

microscopic PL spectroscopy setup, PL maps were recorded of areas of which SEM images were 

taken beforehand, allowing superposition of SEM images and PL maps as shown in Figure 6. The 

match between the PL energy peak map and the SEM images is quite remarkable (Figure 6e), 

showing that the wrinkled morphology has different emission features exactly in the thin “valley” 

and thicker “hill” regions. Elevated regions correspond to peak positions at lower energies, 

whereas the valley regions exhibit peaks at higher energies, with a spectral difference of about 

0.03 eV (Figure 6d). In contrast, much more uniform maps were recorded on samples with flat 

perovskite morphology (Figure 6c). Note that the PL peak position shifts slightly to lower values 

under constant illumination for the local PL measurements for both morphologies over several 

100 s (see Figure S13) and the illumination time for the PL mapping is <1 s. Therefore a slight 

deviation in PL peak position is measured between global (Figure 5a) and local PL (Figure 6 c,d) 

data, presumably also as different excitation intensities were used. Having a mixed anion 

perovskite absorber, one conceivable explanation is compositional difference in form of 

increased bromide content in the flat regions (higher band gap valleys) and increased iodine 

content in the elevated areas (lower band gap hills). 
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Figure 6: (a-b) SEM top view images of flat and wrinkled perovskite films on ITO-coated glass substrates. Insets 
show magnified areas of flat/wrinkled surfaces. (c-d) Spectral PL peak position (Voigt fit function) maps obtained in 
the same region as the SEM images. (e) Superposition of SEM image and PL peak position map for the wrinkled 
perovskite morphology. The band gap scale corresponds to all PL maps (c,d,e). 

In order to test the hypothesis of compositional variation in the structured perovskite films as a 

possible cause of the inhomogeneous bandgap, energy dispersive X-ray spectroscopy (EDX) 

measurements were performed on cross sections of wrinkled perovskite layers. An EDX line scan 

ranging from a valley to hill area is shown in Figure 7. Within the measurement accuracy, no 

indication for a compositional variation can be found for the relevant elements. A presumed 

change in the bromide/iodide ratio was thus not confirmed. EDX spectra for the start (valley) and 

end point (hill) of the cross section of the wrinkled film can be found in Figure S14. EDX 

measurements in top view show similar results, the only significant difference being the detection 

of indium from ITO in thin layer areas, both for the flat films and the valleys of the wrinkled 

films (Figure S15). Additionally, X-ray diffraction (XRD) patterns (Figure S16) and XPS spectra 

(Figure S17) were recorded on films of both perovskite morphologies. The XRD patterns of the 

flat and wrinkled film morphology were consistent with a cubic perovskite crystal structure with 

lattice parameters varying slightly from 6.28 Ǻ for the flat morphology to about 6.27 Ǻ for the 

wrinkled film morphology. Low intensity ITO peaks are visible in the XRD pattern of the flat 
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morphology sample due to a thinner perovskite layer. Asymmetric broadening of the peaks at 13-

14° of both samples was caused by the grazing incident setup and has also been observed with 

other perovskite samples with this instrument. XPS signals of Pb 4f, I 3d, Cs 3d and Br 3d of 

both morphologies were almost identical in binding energy and intensity (Figure S17 and Table 

S3), confirming very similar composition. The spectra closely resemble XPS data of 

Cs0.2FA0.8Pb(I0.92Br0.08)3 perovskite reported by Yi et al.17 Thus, no clear evidence was found that 

the lateral PL peak shifts is caused by another perovskite phase or a different composition.  

 

Figure 7: EDX line scan from flat to elevated area on a cross section of wrinkled perovskite film on ITO-coated 
glass substrate. 

After finding that composition and perovskite phase are homogeneous in the wrinkled films, the 

grain size was analyzed in more detail: Regions of high layer thickness in the wrinkled perovskite 

layers systematically show larger grain sizes, not only on the surface but also within the film as 

cross section SEM images shown in Figure S14a,b. The correlation between crystal size and PL 

peak position has been observed for MAPbI3 perovskite films as well as single crystals.71–76 

Accordingly, an increase crystal or grain size can be accompanied with a red-shift of the PL peak 

which has been attributed to higher lattice strain in small crystals by D’Innocenzo.71 Another 

explanation of this effect is spectrally dependent reabsorption of photoluminescence radiation 

which may influence the peak position of the PL signal. In areas of high layer thickness, 
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enhanced reabsorption of higher energy photons may shift the measured peak position towards 

lower energies. 

CONCLUSIONS 

In summary, we analyzed the influence of CsxFA1−xPb(I1−yBry)3 precursor composition (x = 0–

0.3; y = 0–0.3), concentration (0.7–1.3 M) and spin-coating conditions on the final morphology of 

perovskite thin films. Compositions containing both Cs and Br, besides FA and I, were found to 

form a wrinkled morphology under various processing conditions, in particular, if a high content 

of Cs was present. We were also able to generate flat perovskite layers using spin-coating 

parameters that suppress formation of the wrinkled structure. Using deposition procedures P1 and 

P2 for flat and wrinkled Cs0.17FA0.83Pb(I0.83Br0.17)3 perovskites, respectively, we then compared 

the photovoltaic performance of both morphologies in planar p-i-n solar cells. Devices with 

wrinkled perovskite morphology resulted in best solar cells with 17% PCE, while Jsc and Voc 

limited the performance of devices with flat perovskite morphology to max. 14.7% PCE. Optical 

simulations showed that the significantly lower layer thickness of flat-structured perovskite 

accounts for most of the reduction in Jsc. Transient PL measurements of flat perovskite layers 

revealed high recombination at the NiOx/perovskite interface accounting for the reduced Voc of 

devices with flat perovskite morphology. This may be caused by the fast perovskite 

crystallization in deposition procedure P1. Despite differences of the peak position in PL maps 

dependent on the microscopic features, XRD, XPS and EDX analyses on macroscopic and 

microscopic level indicated the presence of a single, homogenous perovskite phase for both flat 

and wrinkled layers analyzed here. The observed PL red shift at areas of high layer thickness 

might be caused by grain size dependent lattice strain or thickness dependent reabsorption of PL 

radiation. Based on our observations on CsxFA1−xPb(I1−yBry)3 film formation, we propose that 

wrinkles result from the release of compressive strain within the perovskite layer, which is 
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strongly dependent on chemical composition, crystallization kinetics and layer thickness. This 

causal link is expected be relevant for further studies when utilizing mixed cation mixed halide 

perovskite compositions. As the wrinkle formation is strongly dependent on the perovskite 

precursor concentration, perovskite composition, and is especially enhanced with higher Cs or Br 

content, it should be taken into account when tuning the band gap towards 1.75 eV for multi-

junction solar cell applications.  
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Optical microscope images, confocal microscope images, surface and cross-sectional scanning 
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performance parameters of PSCs fabricated with different perovskite precursor concentrations. 
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